2014 Sharygin Geometry Olympiad

First (Correspondence) Round

1

A right-angled triangle $ABC$ is given. Its catheus $AB$ is the base of a regular triangle $ADB$ lying in the exterior of $ABC$, and its hypotenuse $AC$ is the base of a regular triangle $AEC$ lying in the interior of $ABC$. Lines $DE$ and $AB$ meet at point $M$. The whole configuration except points $A$ and $B$ was erased. Restore the point $M$.

2

A paper square with sidelength $2$ is given. From this square, can we cut out a $12$-gon having all sidelengths equal to $1$ and all angles divisible by $45^\circ$?

3

Let $ABC$ be an isosceles triangle with base $AB$. Line $\ell$ touches its circumcircle at point $B$. Let $CD$ be a perpendicular from $C$ to $\ell$, and $AE$, $BF$ be the altitudes of $ABC$. Prove that $D$, $E$, and $F$ are collinear.

4

A square is inscribed into a triangle (one side of the triangle contains two vertices and each of two remaining sides contains one vertex. Prove that the incenter of the triangle lies inside the square.

5

In an acute-angled triangle $ABC$, $AM$ is a median, $AL$ is a bisector and $AH$ is an altitude ($H$ lies between $L$ and $B$). It is known that $ML=LH=HB$. Find the ratios of the sidelengths of $ABC$.

6

Given a circle with center $O$ and a point $P$ not lying on it, let $X$ be an arbitrary point on this circle and $Y$ be a common point of the bisector of angle $POX$ and the perpendicular bisector to segment $PX$. Find the locus of points $Y$.

7

A parallelogram $ABCD$ is given. The perpendicular from $C$ to $CD$ meets the perpendicular from $A$ to $BD$ at point $F$, and the perpendicular from $B$ to $AB$ meets the perpendicular bisector to $AC$ at point $E$. Find the ratio in which side $BC$ divides segment $EF$.

8

Let $ABCD$ be a rectangle. Two perpendicular lines pass through point $B$. One of them meets segment $AD$ at point $K$, and the second one meets the extension of side $CD$ at point $L$. Let $F$ be the common point of $KL$ and $AC$. Prove that $BF\perp KL$.

9

Two circles $\omega_1$ and $\omega_2$ touching externally at point $L$ are inscribed into angle $BAC$. Circle $\omega_1$ touches ray $AB$ at point $E$, and circle $\omega_2$ touches ray $AC$ at point $M$. Line $EL$ meets $\omega_2$ for the second time at point $Q$. Prove that $MQ\parallel AL$.

10

Two disjoint circles $\omega_1$ and $\omega_2$ are inscribed into an angle. Consider all pairs of parallel lines $l_1$ and $l_2$ such that $l_1$ touches $\omega_1$ and $l_2$ touches $\omega_2$ ($\omega_1$, $\omega_2$ lie between $l_1$ and $l_2$). Prove that the medial lines of all trapezoids formed by $l_1$ and $l_2$ and the sides of the angle touch some fixed circle.

11

Points $K, L, M$ and $N$ lying on the sides $AB, BC, CD$ and $DA$ of a square $ABCD$ are vertices of another square. Lines $DK$ and $N M$ meet at point $E$, and lines $KC$ and $LM$ meet at point $F$ . Prove that $EF\parallel AB$.

12

Circles $\omega_1$ and $\omega_2$ meet at points $A$ and $B$. Let points $K_1$ and $K_2 $ of $\omega_1$ and $\omega_2$ respectively be such that $K_1A$ touches $\omega_2$, and $K_2A$ touches $\omega_1$. The circumcircle of triangle $K_1BK_2$ meets lines $AK_1$ and $AK_2$ for the second time at points $L_1$ and $L_2$ respectively. Prove that $L_1$ and $L_2$ are equidistant from line $AB$.

13

Let $AC$ be a fixed chord of a circle $\omega$ with center $O$. Point $B$ moves along the arc $AC$. A fixed point $P$ lies on $AC$. The line passing through $P$ and parallel to $AO$ meets $BA$ at point $A_1$, the line passing through $P$ and parallel to $CO$ meets $BC$ at point $C_1$. Prove that the circumcenter of triangle $A_1BC_1$ moves along a straight line.

14

In a given disc, construct a subset such that its area equals the half of the disc area and its intersection with its reflection over an arbitrary diameter has the area equal to the quarter of the disc area.

15

Let $ABC$ be a non-isosceles triangle. The altitude from $A$, the bisector from $B$ and the median from $C$ concur at point $K$. a) Which of the sidelengths of the triangle is medial (intermediate in length)? b) Which of the lengths of segments $AK, BK, CK$ is medial (intermediate in length)?

16

Given a triangle $ABC$ and an arbitrary point $D$.The lines passing through $D$ and perpendicular to segments $DA, DB, DC$ meet lines $BC, AC, AB$ at points $A_1, B_1, C_1$ respectively. Prove that the midpoints of segments $AA_1, BB_1, CC_1$ are collinear.

17

Let $AC$ be the hypothenuse of a right-angled triangle $ABC$. The bisector $BD$ is given, and the midpoints $E$ and $F$ of the arcs $BD$ of the circumcircles of triangles $ADB$ and $CDB$ respectively are marked (the circles are erased). Construct the centers of these circles using only a ruler.

18

Let $I$ be the incenter of a circumscribed quadrilateral $ABCD$. The tangents to circle $AIC$ at points $A, C$ meet at point $X$. The tangents to circle $BID$ at points $B, D$ meet at point $Y$ . Prove that $X, I, Y$ are collinear.

19

Two circles $\omega_1$ and $\omega_2$ touch externally at point $P$.Let $A$ be a point on $\omega_2$ not lying on the line through the centres of the two circles.Let $AB$ and $AC$ be the tangents to $\omega_1$.Lines $BP$ and $CP$ meet $\omega_2$ for the second time at points $E$ and $F$.Prove that the line $EF$,the tangent to $\omega_2$ at $A$ and the common tangent at $P$ concur.

20

A quadrilateral $KLMN$ is given. A circle with center $O$ meets its side $KL$ at points $A$ and $A_1$, side $LM$ at points $B$ and $B_1$, etc. Prove that if the circumcircles of triangles $KDA, LAB, MBC$ and $NCD$ concur at point $P$, then a) the circumcircles of triangles $KD_1A_1, LA_1B_1, MB_1C_1$ and $NC1D1$ also concur at some point $Q$; b) point $O$ lies on the perpendicular bisector to $PQ$.

21

Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.

22

Does there exist a convex polyhedron such that it has diagonals and each of them is shorter than each of its edges?

23

Let $A, B, C$ and $D$ be a triharmonic quadruple of points, i.e $AB\cdot CD = AC \cdot BD = AD \cdot BC.$ Let $A_1$ be a point distinct from $A$ such that the quadruple $A_1, B, C$ and $D$ is triharmonic. Points $B_1, C_1$ and $D_1$ are defined similarly. Prove that a) $A, B, C_1, D_1$ are concyclic; b) the quadruple $A_1, B_1, C_1, D_1$ is triharmonic.

24

A circumscribed pyramid $ABCDS$ is given. The opposite sidelines of its base meet at points $P$ and $Q$ in such a way that $A$ and $B$ lie on segments $PD$ and $PC$ respectively. The inscribed sphere touches faces $ABS$ and $BCS$ at points $K$ and $L$. Prove that if $PK$ and $QL$ are complanar then the touching point of the sphere with the base lies on $BD$.

Final Round

grade 8

1

The incircle of a right-angled triangle $ABC$ touches its catheti $AC$ and $BC$ at points $B_1$ and $A_1$, the hypotenuse touches the incircle at point $C_1$. Lines $C_1A_1$ and $C_1B_1$ meet $CA$ and $CB$ respectively at points $B_0$ and $A_0$. Prove that $AB_0 = BA_0$. (J. Zajtseva, D. Shvetsov )

2

Let $AH_a$ and $BH_b$ be altitudes, $AL_a$ and $BL_b$ be angle bisectors of a triangle $ABC$. It is known that $H_aH_b // L_aL_b$. Is it necessarily true that $AC = BC$? (B. Frenkin)

3

Points $M$ and $N$ are the midpoints of sides $AC$ and $BC$ of a triangle $ABC$. It is known that $\angle MAN = 15^o$ and $\angle BAN = 45^o$. Find the value of angle $\angle ABM$. (A. Blinkov)

4

Tanya has cut out a triangle from checkered paper as shown in the picture. The lines of the grid have faded. Can Tanya restore them without any instruments only folding the triangle (she remembers the triangle sidelengths)? (T. Kazitsyna)

5

A triangle with angles of $30, 70$ and $80$ degrees is given. Cut it by a straight line into two triangles in such a way that an angle bisector in one of these triangles and a median in the other one drawn from two endpoints of the cutting segment are parallel to each other. (It suffices to find one such cutting.) (A. Shapovalov )

6

Two circles $k_1$ and $k_2$ with centers $O_1$ and $O_2$ are tangent to each other externally at point $O$. Points $X$ and $Y$ on $k_1$ and $k_2$ respectively are such that rays $O_1X$ and $O_2Y$ are parallel and codirectional. Prove that two tangents from $X$ to $k_2$ and two tangents from $Y$ to $k_1$ touch the same circle passing through $O$. (V. Yasinsky)

7

Two points on a circle are joined by a broken line shorter than the diameter of the circle. Prove that there exists a diameter which does not intersect this broken line. (Folklor )

8

Let $M$ be the midpoint of the chord $AB$ of a circle centered at $O$. Point $K$ is symmetric to $M$ with respect to $O$, and point $P$ is chosen arbitrarily on the circle. Let $Q$ be the intersection of the line perpendicular to $AB$ through $A$ and the line perpendicular to $PK$ through $P$. Let $H$ be the projection of $P$ onto $AB$. Prove that $QB$ bisects $PH$. (Tran Quang Hung)

grade 9

1

Let $ABCD$ be a cyclic quadrilateral. Prove that $AC > BD$ if and only if $(AD-BC)(AB- CD) > 0$. (V. Yasinsky)

2

In a quadrilateral $ABCD$ angles $A$ and $C$ are right. Two circles with diameters $AB$ and $CD$ meet at points $X$ and $Y$ . Prove that line $XY$ passes through the midpoint of $AC$. (F. Nilov )

3

An acute angle $A$ and a point $E$ inside it are given. Construct points $B, C$ on the sides of the angle such that $E$ is the center of the Euler circle of triangle $ABC$. (E. Diomidov)

4

Let $H$ be the orthocenter of a triangle $ABC$. Given that $H$ lies on the incircle of $ABC$ , prove that three circles with centers $A, B, C$ and radii $AH, BH, CH$ have a common tangent. (Mahdi Etesami Fard)

5

In triangle $ABC$ $\angle B = 60^o, O$ is the circumcenter, and $L$ is the foot of an angle bisector of angle $B$. The circumcirle of triangle $BOL$ meets the circumcircle of $ABC$ at point $D \ne B$. Prove that $BD \perp AC$. (D. Shvetsov)

6

Let $I$ be the incenter of triangle $ABC$, and $M, N$ be the midpoints of arcs $ABC$ and $BAC$ of its circumcircle. Prove that points $M, I, N$ are collinear if and only if$ AC + BC = 3AB$. (A. Polyansky)

7

Nine circles are drawn around an arbitrary triangle as in the figure. All circles tangent to the same side of the triangle have equal radii. Three lines are drawn, each one connecting one of the triangle’s vertices to the center of one of the circles touching the opposite side, as in the figure. Show that the three lines are concurrent. (N. Beluhov)

8

A convex polygon $P$ lies on a flat wooden table. You are allowed to drive some nails into the table. The nails must not go through $P$, but they may touch its boundary. We say that a set of nails blocks $P$ if the nails make it impossible to move $P$ without lifting it off the table. What is the minimum number of nails that suffices to block any convex polygon $P$? (N. Beluhov, S. Gerdgikov)

grade 10

1

The vertices and the circumcenter of an isosceles triangle lie on four different sides of a square. Find the angles of this triangle. (I. Bogdanov, B. Frenkin)

2

A circle, its chord $AB$ and the midpoint $W$ of the minor arc $AB$ are given. Take an arbitrary point $C$ on the major arc $AB$. The tangent to the circle at $C$ meets the tangents at $A$ and $B$ at points $X$ and $Y$ respectively. Lines $WX$ and WY meet AB at points $N$ and $M$ respectively. Prove that the length of segment $NM$ does not depend on point $C$. (A. Zertsalov, D. Skrobot)

3

Do there exist convex polyhedra with an arbitrary number of diagonals (a diagonal is a segment joining two vertices of a polyhedron and not lying on the surface of this polyhedron)? (A. Blinkov)

4

Let $ABC$ be a fixed triangle in the plane. Let $D$ be an arbitrary point in the plane. The circle with center $D$, passing through $A$, meets $AB$ and $AC$ again at points $A_b$ and $A_c$ respectively. Points $B_a, B_c, C_a$ and $C_b$ are defined similarly. A point $D$ is called good if the points $A_b, A_c,B_a, B_c, C_a$, and $C_b$ are concyclic. For a given triangle $ABC$, how many good points can there be? (A. Garkavyj, A. Sokolov )

5

The altitude from one vertex of a triangle, the bisector from the another one and the median from the remaining vertex were drawn, the common points of these three lines were marked, and after this everything was erased except three marked points. Restore the triangle. (For every two erased segments, it is known which of the three points was their intersection point.) (A. Zaslavsky)

6

The incircle of a non-isosceles triangle $ABC$ touches $AB$ at point $C'$. The circle with diameter $BC'$ meets the incircle and the bisector of angle $B$ again at points $A_1$ and $A_2$ respectively. The circle with diameter $AC'$ meets the incircle and the bisector of angle $A$ again at points $B_1$ and $B_2$ respectively. Prove that lines $AB, A_1B_1, A_2B_2$ concur. (E. H. Garsia)

7

Prove that the smallest dihedral angle between faces of an arbitrary tetrahedron is not greater than the dihedral angle between faces of a regular tetrahedron. (S. Shosman, O. Ogievetsky)

8

Given is a cyclic quadrilateral $ABCD$. The point $L_a$ lies in the interior of $BCD$ and is such that its distances to the sides of this triangle are proportional to the lengths of corresponding sides. The points $L_b, L_c$, and $L_d$ are defined analogously. Given that the quadrilateral $L_aL_bL_cL_d$ is cyclic, prove that the quadrilateral $ABCD$ has two parallel sides. (N. Beluhov)