Let $ABCD$ be a cyclic quadrilateral. Prove that $AC > BD$ if and only if $(AD-BC)(AB- CD) > 0$. (V. Yasinsky)
Problem
Source: 2014 Sharygin Geometry Olympiad Final Round 9.1
Tags: geometry, cyclic quadrilateral, geometric inequality
Source: 2014 Sharygin Geometry Olympiad Final Round 9.1
Tags: geometry, cyclic quadrilateral, geometric inequality
Let $ABCD$ be a cyclic quadrilateral. Prove that $AC > BD$ if and only if $(AD-BC)(AB- CD) > 0$. (V. Yasinsky)