Points $K, L, M$ and $N$ lying on the sides $AB, BC, CD$ and $DA$ of a square $ABCD$ are vertices of another square. Lines $DK$ and $N M$ meet at point $E$, and lines $KC$ and $LM$ meet at point $F$ . Prove that $EF\parallel AB$.
Source: Sharygin 2014 Correspondence Round
Tags: geometry unsolved, geometry
Points $K, L, M$ and $N$ lying on the sides $AB, BC, CD$ and $DA$ of a square $ABCD$ are vertices of another square. Lines $DK$ and $N M$ meet at point $E$, and lines $KC$ and $LM$ meet at point $F$ . Prove that $EF\parallel AB$.