Problem

Source: 2014 Sharygin Geometry Olympiad Final Round 8.1

Tags: geometry, right triangle



The incircle of a right-angled triangle $ABC$ touches its catheti $AC$ and $BC$ at points $B_1$ and $A_1$, the hypotenuse touches the incircle at point $C_1$. Lines $C_1A_1$ and $C_1B_1$ meet $CA$ and $CB$ respectively at points $B_0$ and $A_0$. Prove that $AB_0 = BA_0$. (J. Zajtseva, D. Shvetsov )