Problem

Source: 2014 Sharygin Geometry Olympiad Final Round 9.5

Tags: geometry, circles, perpendicular



In triangle $ABC$ $\angle B = 60^o, O$ is the circumcenter, and $L$ is the foot of an angle bisector of angle $B$. The circumcirle of triangle $BOL$ meets the circumcircle of $ABC$ at point $D \ne B$. Prove that $BD \perp AC$. (D. Shvetsov)