A circle, its chord $AB$ and the midpoint $W$ of the minor arc $AB$ are given. Take an arbitrary point $C$ on the major arc $AB$. The tangent to the circle at $C$ meets the tangents at $A$ and $B$ at points $X$ and $Y$ respectively. Lines $WX$ and WY meet AB at points $N$ and $M$ respectively. Prove that the length of segment $NM$ does not depend on point $C$. (A. Zertsalov, D. Skrobot)
Problem
Source: 2014 Sharygin Geometry Olympiad Final Round 10.2
Tags: geometry, tangent, constant, Segment