A convex polygon $P$ lies on a flat wooden table. You are allowed to drive some nails into the table. The nails must not go through $P$, but they may touch its boundary. We say that a set of nails blocks $P$ if the nails make it impossible to move $P$ without lifting it off the table. What is the minimum number of nails that suffices to block any convex polygon $P$? (N. Beluhov, S. Gerdgikov)
Problem
Source: 2014 Sharygin Geometry Olympiad Final Round 9.8
Tags: geometry, convex polygon, minimum