2020-IMOC

Algebra

A1

$\definecolor{A}{RGB}{190,0,60}\color{A}\fbox{A1.}$ Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $$\definecolor{A}{RGB}{80,0,200}\color{A} x^4+y^4+z^4\ge f(xy)+f(yz)+f(zx)\ge xyz(x+y+z)$$holds for all $a,b,c\in\mathbb{R}$. Proposed by usjl. #1733

A2

Find all function $f:\mathbb{R}^+$ $\rightarrow \mathbb{R}^+$ such that: $f(f(x) + y)f(x) = f(xy + 1) \forall x, y \in \mathbb{R}^+$

A3

$\definecolor{A}{RGB}{250,120,0}\color{A}\fbox{A3.}$ Assume that $a, b, c$ are positive reals such that $a + b + c = 3$. Prove that $$\definecolor{A}{RGB}{200,0,200}\color{A} \frac{1}{8a^2-18a+11}+\frac{1}{8b^2-18b+11}+\frac{1}{8c^2-18c+11}\le 3.$$ Proposed by ltf0501. #1734

A4

One day, before his work time at Jane Street, Sunny decided to have some fun. He saw that there are some real numbers $a_{-1},\ldots,a_{-k}$ on a blackboard, so he decided to do the following process just for fun: if there are real numbers $a_{-k},\ldots,a_{n-1}$ on the blackboard, then he computes the polynomial $$P_n(t)=(1-a_{-k}t)\cdots(1-a_{n-1}t).$$He then writes a real number $a_n$, where $$a_n=\frac{iP_n(i)-iP_n(-i)}{P_n(i)+P_n(-i)}.$$If $a_n$ is undefined (that is, $P_n(i)+P_n(-i)=0$), then he would stop and go to work. Show that if Sunny writes some real number on the blackboard twice (or equivalently, there exists $m>n\ge0$ such that $am=an$), then the process never stops. Moreover, show that in this case, all the numbers Sunny writes afterwards will already be written before. (usjl)

A5

Let $0<c<1$ be a given real number. Determine the least constant $K$ such that the following holds: For all positive real $M$ that is greater than $1$, there exists a strictly increasing sequence $x_0, x_1, \ldots, x_n$ (of arbitrary length) such that $x_0=1, x_n\geq M$ and \[\sum_{i=0}^{n-1}\frac{\left(x_{i+1}-x_i\right)^c}{x_i^{c+1}}\leq K.\] (From 2020 IMOCSL A5. I think this problem is particularly beautiful so I want to make a separate thread for it )

A6

$\definecolor{A}{RGB}{255,0,0}\color{A}\fbox{A6.}$ Let $ P (x)$ be a polynomial with real coefficients such that $\deg P \ge 3$ is an odd integer. Let $f : \mathbb{R}\rightarrow\mathbb{Z}$ be a function such that $$\definecolor{A}{RGB}{0,0,200}\color{A}\forall_{x\in\mathbb{R}}\ f(P(x)) = P(f(x)).$$$\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(a)}$ Prove that the range of $f$ is finite. $\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(b)}$ Show that for any positive integer $n$, there exist $P$, $f$ that satisfies the above condition and also that the range of $f$ has cardinality $n$. Proposed by ltf0501. #1735

Combinatorics

C1

Find all positive integer $N$ such that for any infinite triangular grid with exactly $N$ black unit equilateral triangles, there exists an equilateral triangle $S$ whose sides align with grid lines such that there is exactly one black unit equilateral triangle outside of $S.$ (ltf0501)

C2

There are $N\ge3$ letters arranged in a circle, and each letter is one of $L$, $T$ and $F$. For a letter, we can do the following operation: if its neighbors are the same, then change it to the same letter too; otherwise, change it so that it is different from both its neighbors. Show that for any initial state, one can perform finitely many operations to achieve a stable state. Here, a stable state means that any operation does not change any of the $N$ letters. (ltf0501)

C3

Sunny wants to send some secret message to usjl. The secret message is a three digit number, where each digit is one digit from $0$ to $9$ (so $000$ is also possibly the secret message). However, when Sunny sends the message to usjl, at most one digit might be altered. Therefore, Sunny decides to send usjl a longer message so that usjl can decipher the message to get the original secret message Sunny wants to send. Sunny and usjl can communicate the strategy beforehand. Show that sending a $4$-digit message does not suffice. Also show that sending a $6$-digit message suffices. If it is deduced that sending a $c$-digit message suffices for some $c>6$, then partial credits may be awarded.

C4

$\definecolor{A}{RGB}{70,80,0}\color{A}\fbox{C4.}$ Show that for any positive integer $n \ge 3$ and some subset of $\lbrace{1, 2, . . . , n}\rbrace$ with size more than $\frac{n}2 + 1$, there exist three distinct elements $a, b, c$ in the subset such that $$\definecolor{A}{RGB}{255,70,255}\color{A} (ab)^2 + (bc)^2 + (ca)^2$$is a perfect square. Proposed by ltf0501. #1736

C5

Alice and Bob are playing a game on a graph with $n\ge3$ vertices. At each moment, Alice needs to choose two vertices so that the graph is connected even if one of them (along with the edges incident to it) is removed. Each turn, Bob removes one edge in the graph, and upon the removal, Alice needs to re-select the two vertices if necessary. However, Bob has to guarantee that after each removal, any two vertices in the graph are still connected via at most $k$ intermediate vertices. Here $0\le k\le n-2$ is some given integer. Suppose that Bob always knows which two vertices Alice chooses, and that initially, the graph is a complete graph. Alice's objective is to change her choice of the two vertices as few times as possible, and Bob's objective is to make Alive re-select as many times as possible. If both Alice and Bob are sufficiently smart, how many times will Alice change her choice of the two vertices? (usjl)

C6

$\definecolor{A}{RGB}{70,255,50}\color{A}\fbox{C6.}$ There are $n$ $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ and $n$ $\definecolor{A}{RGB}{255,0,255}\color{A}\text{girls}$ in a club. Some of them are friends with each other. The $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ want to get into a relationship, so some subset of them wants to ask some $\definecolor{A}{RGB}{255,0,255}\color{A}\text{girls}$ out for a trip. Because the $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ are shy, for a nonempty set $B$ of $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$, they want to make sure that each of the girl they ask out is friend with one of the $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ in $B$. If the number of $\definecolor{A}{RGB}{255,0,255}\color{A}\text{girls}$ they are able to ask out is smaller than the number of the $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ in $B$, then the nonempty set $B$ of those $\definecolor{A}{RGB}{0,0,255}\color{A}\text{boys}$ is called a group of complete losers. Show that for any $0 \le k < 2n$, there exists an arrangement of the friendships among those $2n$ people so that there are exactly $k$ groups of complete losers. Proposed by ltf0501. #1737

Geometry

G1

Let $O$ be the circumcenter of triangle $ABC$. Choose a point $X$ on the circumcircle $\odot (ABC)$ such that $OX\parallel BC$. Assume that $\odot(AXO)$ intersects $AB, AC$ at $E, F$, respectively, and $OE, OF$ intersect $BC$ at $P, Q$, respectively. Furthermore, assume that $\odot(XP Q)$ and $\odot (ABC)$ intersect at $R$. Prove that $OR$ and $\odot (XP Q)$ are tangent to each other. (ltf0501)

G2

Let $O$ be the circumcenter of triangle $ABC$. Define $O_{A0} = O_{B0} = O_{C0} = O$. Recursively, define $O_{An}$ to be the circumcenter of $\vartriangle BO_{A(n-1)}C$. Similarly define $O_{Bn}, O_{Cn}$. Find all $n \ge 1$ so that for any triangle $ABC$ such that $O_{An}, O_{Bn}, O_{Cn}$ all exist, it is true that $AO_{An}, BO_{Bn}, CO_{Cn}$ are concurrent. (Li4)

G3

Triangle $ABC$ has incenter $I$ and circumcenter $O$. $AI, BI, CI$ intersect the circumcircle of $ABC$ again at $M_A, M_B, M_C$, respectively. Show that the Euler line of $BIC$ passes through the circumcenter of $OM_BM_C$. (houkai)

G4

Let $I$ be the incenter of triangle $ABC$. Let $BI$ and $AC$ intersect at $E$, and $CI$ and $AB$ intersect at $F$. Suppose that $R$ is another intersection of $\odot (ABC)$ and $\odot (AEF)$. Let $M$ be the midpoint of $BC$, and $P, Q$ are the intersections of $AI, MI$ and $EF$, respectively. Show that $A, P, Q, R$ are concyclic. (ltf0501).

G5

Let $O, H$ be the circumcentor and the orthocenter of a scalene triangle $ABC$. Let $P$ be the reflection of $A$ w.r.t. $OH$, and $Q$ is a point on $\odot (ABC)$ such that $AQ, OH, BC$ are concurrent. Let $A'$ be a points such that $ABA'C$ is a parallelogram. Show that $A', H, P, Q$ are concylic. (ltf0501).

G6

Let $ABC$ be a triangle, and $M_a, M_b, M_c$ be the midpoints of $BC, CA, AB$, respectively. Extend $M_bM_c$ so that it intersects $\odot (ABC)$ at $P$. Let $AP$ and $BC$ intersect at $Q$. Prove that the tangent at $A$ to $\odot(ABC)$ and the tangent at $P$ to $\odot (P QM_a)$ intersect on line $BC$. (Li4)

Number Theory

N1

$\textbf{N1.}$ Find all nonnegative integers $a,b,c$ such that \begin{align*} a^2+b^2+c^2-ab-bc-ca = a+b+c \end{align*}Proposed by usjl

N2

Find all positive integers $N$ such that the following holds: There exist pairwise coprime positive integers $a,b,c$ with $$\frac1a+\frac1b+\frac1c=\frac N{a+b+c}.$$

N3

$\textbf{N3:}$ For any positive integer $n$, define $rad(n)$ to be the product of all prime divisors of $n$ (without multiplicities), and in particular $rad(1)=1$. Consider an infinite sequence of positive integers $\{a_n\}_{n=1}^{\infty}$ satisfying that \begin{align*} a_{n+1} = a_n + rad(a_n), \: \forall n \in \mathbb{N} \end{align*}Show that there exist positive integers $t,s$ such that $a_t$ is the product of the $s$ smallest primes. Proposed by ltf0501

N4

$\textbf{N4:} $ Let $a,b$ be two positive integers such that for all positive integer $n>2020^{2020}$, there exists a positive integer $m$ coprime to $n$ with \begin{align*} \text{ $a^n+b^n \mid a^m+b^m$} \end{align*}Show that $a=b$ Proposed by ltf0501

N5

$\textbf{N5.}$ Find all $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $a,b,c \in \mathbb{N}$ $f(a)+f(b)+f(c)-ab-bc-ca \mid af(a)+bf(b)+cf(c)-3abc$

N6

$\textbf{N6.}$ Let $a,b$ be positive integers. If $a,b$ satisfy that \begin{align*} \frac{a+1}{b} + \frac{b+1}{a} \end{align*}is also a positive integer, show that \begin{align*} \frac{a+b}{gcd(a,b)^2} \end{align*}is a Fibonacci number. Proposed by usjl