Let $O$ be the circumcenter of triangle $ABC$. Choose a point $X$ on the circumcircle $\odot (ABC)$ such that $OX\parallel BC$. Assume that $\odot(AXO)$ intersects $AB, AC$ at $E, F$, respectively, and $OE, OF$ intersect $BC$ at $P, Q$, respectively. Furthermore, assume that $\odot(XP Q)$ and $\odot (ABC)$ intersect at $R$. Prove that $OR$ and $\odot (XP Q)$ are tangent to each other. (ltf0501)
Problem
Source: https://artofproblemsolving.com/community/c6h2254883p17398793
Tags: circumcircle, tangent circles, geometry