Problem

Source: IMOC 2020

Tags: IMOC, number theory, Divisibility



$\textbf{N4:} $ Let $a,b$ be two positive integers such that for all positive integer $n>2020^{2020}$, there exists a positive integer $m$ coprime to $n$ with \begin{align*} \text{ $a^n+b^n \mid a^m+b^m$} \end{align*}Show that $a=b$ Proposed by ltf0501