$\textbf{N4:} $ Let $a,b$ be two positive integers such that for all positive integer $n>2020^{2020}$, there exists a positive integer $m$ coprime to $n$ with \begin{align*} \text{ $a^n+b^n \mid a^m+b^m$} \end{align*}Show that $a=b$ Proposed by ltf0501
Problem
Source: IMOC 2020
Tags: IMOC, number theory, Divisibility
08.09.2020 09:43
easy for $N4$ i guess. .
08.09.2020 10:28
Mr.C wrote: easy for $N4$ i guess. .
What is the weak version of zsigmondy?
08.09.2020 12:20
just using the fact that $x^n-y^n$ has a prime devisor that $x-y$ doesnt
08.09.2020 13:30
27.11.2021 14:32
Define $f(n)=a^n+b^n,n>2020^{2020}$ Suppoce that $b-a\neq 0$. There exist $m$ with $(m,n)=1$ and $f(n)|f(m)$. If the set of prime divisors of $a^i+b^i,i=1,2,..$ is infinity take prime $p$ large enough such that $(p,a)=(p,b)=1$ and $p|a^n+b^n$ for some $n$. By bezout's lemma we can find $k,l\in \mathbb{Z}$ such that $nk+ml=1$. Note that $a^n=-b^n \pmod p, a^m=-b^m \pmod p\Rightarrow $ $a^{kn}=(-1)^kb^{kn} \pmod p, a^{ml}=(-1)^lb^{ml}\pmod p \Rightarrow p|a+b$ or $p|a-b$ contradiction etc (consider (a,b)=1 and $n=F(p_1-1)..(p_k-1),,F$ large integer, where $p_1..,p_k$ the set of prime divisors of $a^i+b^i,i=1,2,..$)