Problem

Source: A6 IMOC 2020

Tags: algebra, polynomial, IMOC



$\definecolor{A}{RGB}{255,0,0}\color{A}\fbox{A6.}$ Let $ P (x)$ be a polynomial with real coefficients such that $\deg P \ge 3$ is an odd integer. Let $f : \mathbb{R}\rightarrow\mathbb{Z}$ be a function such that $$\definecolor{A}{RGB}{0,0,200}\color{A}\forall_{x\in\mathbb{R}}\ f(P(x)) = P(f(x)).$$$\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(a)}$ Prove that the range of $f$ is finite. $\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(b)}$ Show that for any positive integer $n$, there exist $P$, $f$ that satisfies the above condition and also that the range of $f$ has cardinality $n$. Proposed by ltf0501. #1735