Problem

Source: 2020 IMOC

Tags: inequalities, IMOC



Let $0<c<1$ be a given real number. Determine the least constant $K$ such that the following holds: For all positive real $M$ that is greater than $1$, there exists a strictly increasing sequence $x_0, x_1, \ldots, x_n$ (of arbitrary length) such that $x_0=1, x_n\geq M$ and \[\sum_{i=0}^{n-1}\frac{\left(x_{i+1}-x_i\right)^c}{x_i^{c+1}}\leq K.\] (From 2020 IMOCSL A5. I think this problem is particularly beautiful so I want to make a separate thread for it )