Problem

Source: IMOC 2020

Tags: number theory, greatest common divisor, IMOC



$\textbf{N6.}$ Let $a,b$ be positive integers. If $a,b$ satisfy that \begin{align*} \frac{a+1}{b} + \frac{b+1}{a} \end{align*}is also a positive integer, show that \begin{align*} \frac{a+b}{gcd(a,b)^2} \end{align*}is a Fibonacci number. Proposed by usjl