Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.
Russian TST 2019
October 21, 2018 - Day 1
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
Let $m,n\geq 2$ be integers. Let $f(x_1,\dots, x_n)$ be a polynomial with real coefficients such that $$f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.$$Prove that the total degree of $f$ is at least $n$.
October 22, 2018 - Day 2
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$for all $x,y\in\mathbb{Q}_{>0}$
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. A line $\ell$ intersects the lines $AI$, $BI$, and $CI$ at points $D$, $E$, and $F$, respectively, distinct from the points $A$, $B$, $C$, and $I$. The perpendicular bisectors $x$, $y$, and $z$ of the segments $AD$, $BE$, and $CF$, respectively determine a triangle $\Theta$. Show that the circumcircle of the triangle $\Theta$ is tangent to $\Omega$.
Consider $2018$ pairwise crossing circles no three of which are concurrent. These circles subdivide the plane into regions bounded by circular $edges$ that meet at $vertices$. Notice that there are an even number of vertices on each circle. Given the circle, alternately colour the vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice- once for each of the two circle that cross at that point. If the two colours agree at a vertex, then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains at least $2061$ yellow points, then the vertices of some region are all yellow. Proposed by India
January 10, 2019 - Day 3
A circle $\omega$ with radius $1$ is given. A collection $T$ of triangles is called good, if the following conditions hold: each triangle from $T$ is inscribed in $\omega$; no two triangles from $T$ have a common interior point. Determine all positive real numbers $t$ such that, for each positive integer $n$, there exists a good collection of $n$ triangles, each of perimeter greater than $t$.
Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
Four positive integers $x,y,z$ and $t$ satisfy the relations \[ xy - zt = x + y = z + t. \]Is it possible that both $xy$ and $zt$ are perfect squares?
January 11, 2019 - Day 4
Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: Each number in the table is congruent to $1$ modulo $n$. The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.
For each permutation $\sigma$ of the set $\{1, 2, \ldots , N\}$ we define its correctness as the number of triples $1 \leqslant i < j < k \leqslant N$ such that the number $\sigma(j)$ lies between the numbers $\sigma(i)$ and $\sigma(k)$. Find the difference between the number of permutations with even correctness and the number of permutations with odd correctness if a) $N = 2018$ and b) $N = 2019$.
Inside the acute-angled triangle $ABC$ we take $P$ and $Q$ two isogonal conjugate points. The perpendicular lines on the interior angle-bisector of $\angle BAC$ passing through $P$ and $Q$ intersect the segments $AC$ and $AB$ at the points $B_p\in AC$, $B_q\in AC$, $C_p\in AB$ and $C_q\in AB$, respectively. Let $W$ be the midpoint of the arc $BAC$ of the circle $(ABC)$. The line $WP$ intersects the circle $(ABC)$ again at $P_1$ and the line $WQ$ intersects the circle $(ABC)$ again at $Q_1$. Prove that the points $P_1$, $Q_1$, $B_p$, $B_q$, $C_p$ and $C_q$ lie on a circle. Proposed by P. Bibikov
May 6, 2019 - Day 5
A school organizes optional lectures for 200 students. At least 10 students have signed up for each proposed lecture, and for any two students there is at most one lecture that both of them have signed up for. Prove that it is possible to hold all these lectures over 211 days so that no one has to attend two lectures in one day.
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
Let $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. A point $D$ is chosen on the internal bisector of $\angle ACB$ so that the points $D$ and $C$ are separated by $AB$. A circle $\omega$ centered at $D$ is tangent to the segment $AB$ at $E$. The tangents to $\omega$ through $C$ meet the segment $AB$ at $K$ and $L$, where $K$ lies on the segment $AL$. A circle $\Omega_1$ is tangent to the segments $AL, CL$, and also to $\Omega$ at point $M$. Similarly, a circle $\Omega_2$ is tangent to the segments $BK, CK$, and also to $\Omega$ at point $N$. The lines $LM$ and $KN$ meet at $P$. Prove that $\angle KCE = \angle LCP$. Poland
May 7, 2019 - Day 6
Unavailable - P1
Prove that for every odd prime number $p{}$, the following congruence holds \[\sum_{n=1}^{p-1}n^{p-1}\equiv (p-1)!+p\pmod{p^2}.\]
Find the maximal value of \[S = \sqrt[3]{\frac{a}{b+7}} + \sqrt[3]{\frac{b}{c+7}} + \sqrt[3]{\frac{c}{d+7}} + \sqrt[3]{\frac{d}{a+7}},\]where $a$, $b$, $c$, $d$ are nonnegative real numbers which satisfy $a+b+c+d = 100$. Proposed by Evan Chen, Taiwan
June 26, 2019 (Group NG) - Day 7
Let $a_0, a_1, \ldots , a_n$ and $b_0, b_1, \ldots , b_n$ be sequences of real numbers such that $a_0 = b_0 \geqslant 0$, $a_n = b_n > 0$ and \[a_i=\sqrt{\frac{a_{i+1}+a_{i-1}}{2}},\quad b_i=\sqrt{\frac{b_{i+1}+b_{i-1}}{2}},\]for all $i=1,\ldots,n-1$. Prove that $a_1 = b_1$.
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
Let $S$ be the set of sequences of length 2018 whose terms are in the set $\{1, 2, 3, 4, 5, 6, 10\}$ and sum to 3860. Prove that the cardinality of $S$ is at most \[2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2018}.\]
June 26, 2019 (Groups A & B) - Day 7
A positive integer $n{}$ is called discontinuous if for all its natural divisors $1 = d_0 < d_1 <\cdots<d_k$, written out in ascending order, there exists $1 \leqslant i \leqslant k$ such that $d_i > d_{i-1}+\cdots+d_1+d_0+1$. Prove that there are infinitely many positive integers $n{}$ such that $n,n+1,\ldots,n+2019$ are all discontinuous.
The same as P1 from Day 7, Group NG - P2
The same as P2 from Day 7, Group NG - P3
The same as P3 from Day 7, Group NG - P4
June 28, 2019 (Group NG) - Day 8
Suppose that $A$, $B$, $C$, and $D$ are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments $AB$, $AC$, $AD$, $BC$, $BD$, and $CD$ are rational numbers, then the quotient \[\frac{\mathrm{area}(\triangle ABC)}{\mathrm{area}(\triangle ABD)}\]is a rational number.
Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face $F$ of the polyhedron are written the number of edges of $F$ belonging to the route of the first ant and the number of edges of $F$ belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers? Proposed by Nikolai Beluhov
Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials. Note: The degree of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are proportional if one of them is the other times a complex constant. Proposed by Navid Safaie
June 28, 2019 (Groups A & B) - Day 8
A convex pentagon $APBCQ$ is given such that $AB < AC$. The circle $\omega$ centered at point $A{}$ passes through $P{}$ and $Q{}$ and touches the segment $BC$ at point $R{}$. Let the circle $\Gamma$ centered at the point $O{}$ be the circumcircle of the triangle $ABC$. It is known that $AO \perp P Q$ and $\angle BQR = \angle CP R$. Prove that the tangents at points $P{}$ and $Q{}$ to the circle $\omega$ intersect on $\Gamma$.
The same as P1 from Day 8, Group NG - P2
Define the sequence $a_0,a_1,a_2,\hdots$ by $a_n=2^n+2^{\lfloor n/2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
The same as P3 from Day 8, Group NG - P4
July 4, 2019 (Group NG) - Day 9
Let $n>1$ be a positive integer. Show that the number of residues modulo $n^2$ of the elements of the set $\{ x^n + y^n : x,y \in \mathbb{N} \}$ is at most $\frac{n(n+1)}{2}$. Proposed by N. Safaei (Iran)
Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$for all $x,y>0$.
Let $O$ be the circumcentre, and $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. Let $P$ be an arbitrary point on $\Omega$, distinct from $A$, $B$, $C$, and their antipodes in $\Omega$. Denote the circumcentres of the triangles $AOP$, $BOP$, and $COP$ by $O_A$, $O_B$, and $O_C$, respectively. The lines $\ell_A$, $\ell_B$, $\ell_C$ perpendicular to $BC$, $CA$, and $AB$ pass through $O_A$, $O_B$, and $O_C$, respectively. Prove that the circumcircle of triangle formed by $\ell_A$, $\ell_B$, and $\ell_C$ is tangent to the line $OP$.
July 4, 2019 (Groups A & B) - Day 9
The shores of the Tvertsy River are two parallel straight lines. There are point-like villages on the shores in some order: 20 villages on the left shore and 15 villages on the right shore. We want to build a system of non-intersecting bridges, that is, segments connecting a couple of villages from different shores, so that from any village you can get to any other village only by bridges (you can't walk along the shore). In how many ways can such a bridge system be built?
The same as P1 from Day 9, Group NG - P2
Let $H{}$ be the orthocenter of the acute-angled triangle $ABC$. In the triangle $BHC$, the median $HM$ and the symedian $HL$ are drawn. The point $K{}$ is marked on the line $LH$ so that $\angle AKL=90^\circ$. Prove that the circumcircles of the triangles $ABC$ and $KLM$ are tangent.
The same as P2 from Day 9, Group NG - P4
July 5, 2019 (Group NG) - Day 10
Point $M{}$ is the middle of the side side $AB$ of the isosceles triangle $ABC$. On the extension of the base $AC$, point $D{}$ is marked such that $C{}$ is between $A{}$ and $D{}$, and point $E{}$ is marked on the segment $BM$. The circumcircle of the triangle $CDE$ intersects the segment $ME$ a second time at point $F$. Prove that it is possible to make a triangle from the segments $AD, DE$ and $AF$.
Numbers $m$ and $n$ are given positive integers. There are $mn$ people in a party, standing in the shape of an $m\times n$ grid. Some of these people are police officers and the rest are the guests. Some of the guests may be criminals. The goal is to determine whether there is a criminal between the guests or not. Two people are considered \textit{adjacent} if they have a common side. Any police officer can see their adjacent people and for every one of them, know that they're criminal or not. On the other hand, any criminal will threaten exactly one of their adjacent people (which is likely an officer!) to murder. A threatened officer will be too scared, that they deny the existence of any criminal between their adjacent people. Find the least possible number of officers such that they can take position in the party, in a way that the goal is achievable. (Note that the number of criminals is unknown and it is possible to have zero criminals.) Proposed by Abolfazl Asadi
Prove that there are infinitely many positive integers $m$ such that the number of odd distinct prime factor of $m(m+3)$ is a multiple of $3$.
July 5, 2019 (Groups A & B) - Day 10
Let $t\in (1,2)$. Show that there exists a polynomial $P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ with the coefficients in $\{1,-1\}$ such that $\left|P(t)-2019\right| \leqslant 1.$ Proposed by N. Safaei (Iran)
The same as P1 from Day 10, Group NG - P2
The same as P2 from Day 10, Group NG - P3
The same as P3 from Day 10, Group NG - P4