Problem

Source: Russian TST 2019, Day 9 P3 (Groups A & B)

Tags: geometry



Let $H{}$ be the orthocenter of the acute-angled triangle $ABC$. In the triangle $BHC$, the median $HM$ and the symedian $HL$ are drawn. The point $K{}$ is marked on the line $LH$ so that $\angle AKL=90^\circ$. Prove that the circumcircles of the triangles $ABC$ and $KLM$ are tangent.