Problem

Source: Kvant Magazine No. 9 2019 M2574

Tags: number theory, Kvant



Let $n>1$ be a positive integer. Show that the number of residues modulo $n^2$ of the elements of the set $\{ x^n + y^n : x,y \in \mathbb{N} \}$ is at most $\frac{n(n+1)}{2}$. Proposed by N. Safaei (Iran)