Problem

Source: IMO Shortlist 2018 A5 (proposed by South Korea)

Tags: function, algebra, IMO Shortlist



Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$for all $x,y>0$.