Prove that for every odd prime number $p{}$, the following congruence holds \[\sum_{n=1}^{p-1}n^{p-1}\equiv (p-1)!+p\pmod{p^2}.\]
Source: Russian TST 2019, Day 6 P2
Tags: number theory, congruence
Prove that for every odd prime number $p{}$, the following congruence holds \[\sum_{n=1}^{p-1}n^{p-1}\equiv (p-1)!+p\pmod{p^2}.\]