Problem

Source: Russian TST 2019, Day 7 P1 (Groups A & B)

Tags: number theory, Divisors



A positive integer $n{}$ is called discontinuous if for all its natural divisors $1 = d_0 < d_1 <\cdots<d_k$, written out in ascending order, there exists $1 \leqslant i \leqslant k$ such that $d_i > d_{i-1}+\cdots+d_1+d_0+1$. Prove that there are infinitely many positive integers $n{}$ such that $n,n+1,\ldots,n+2019$ are all discontinuous.