2006 Bulgaria Team Selection Test

Day 1

1

Problem 1. In the cells of square table are written the numbers $1$, $0$ or $-1$ so that in every line there is exactly one $1$, amd exactly one $-1$. Each turn we change the places of two columns or two rows. Is it possible, from any such table, after finite number of turns to obtain its opposite table (two tables are opposite if the sum of the numbers written in any two corresponding squares is zero)? Emil Kolev

2

Find all couples of polynomials $(P,Q)$ with real coefficients, such that for infinitely many $x\in\mathbb R$ the condition \[ \frac{P(x)}{Q(x)}-\frac{P(x+1)}{Q(x+1)}=\frac{1}{x(x+2)}\] Holds. Nikolai Nikolov, Oleg Mushkarov

3

Problem 3. Two points $M$ and $N$ are chosen inside a non-equilateral triangle $ABC$ such that $\angle BAM=\angle CAN$, $\angle ABM=\angle CBN$ and \[AM\cdot AN\cdot BC=BM\cdot BN\cdot CA=CM\cdot CN\cdot AB=k\] for some real $k$. Prove that: a) We have $3k=AB\cdot BC\cdot CA$. b) The midpoint of $MN$ is the medicenter of $\triangle ABC$. Remark. The medicenter of a triangle is the intersection point of the three medians: If $A_{1}$ is midpoint of $BC$, $B_{1}$ of $AC$ and $C_{1}$ of $AB$, then $AA_{1}\cap BB_{1}\cap CC_{1}= G$, and $G$ is called medicenter of triangle $ABC$. Nikolai Nikolov

Day 2

1

Problem 4. Let $k$ be the circumcircle of $\triangle ABC$, and $D$ the point on the arc $\overarc{AB},$ which do not pass through $C$. $I_A$ and $I_B$ are the centers of incircles of $\triangle ADC$ and $\triangle BDC$, respectively. Proove that the circumcircle of $\triangle I_AI_BC$ touches $k$ iff \[ \frac{AD}{BD}=\frac{AC+CD}{BC+CD}. \] Stoyan Atanasov

2

Prove that if $a,b,c>0,$ then \[ \frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}\le \frac{a+b+c}{12}. \] Nikolai Nikolov

3

Problem 6. Let $p>2$ be prime. Find the number of the subsets $B$ of the set $A=\{1,2,\ldots,p-1\}$ such that, the sum of the elements of $B$ is divisible by $p.$ Ivan Landgev

Day 3

1

Problem 1. Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$. Nikolai Nikolov

2

a) Let $\{a_n\}_{n=1}^\infty$ is sequence of integers bigger than 1. Proove that if $x>0$ is irrational, then $\ds x_n>\frac{1}{a_{n+1}}$ for infinitely many $n$, where $x_n$ is fractional part of $a_na_{n-1}\dots a_1x$. b)Find all sequences $\{a_n\}_{n=1}^\infty$ of positive integers, for which exist infinitely many $x\in(0,1)$ such that $\ds x_n>\frac{1}{a_{n+1}}$ for all $n$. Nikolai Nikolov, Emil Kolev

3

Problem 3. Let $n\geq 3$ is given natural number, and $M$ is the set of the first $n$ primes. For any nonempty subset $X$ of $M$ with $P(X)$ denote the product of its elements. Let $N$ be a set of the kind $\ds\frac{P(A)}{P(B)}$, $A\subset M, B\subset M, A\cap B=\emptyset$ such that the product of any 7 elements of $N$ is integer. What is the maximal number of elements of $N$? Alexandar Ivanov

Day 4

1

Find all sequences of positive integers $\{a_n\}_{n=1}^{\infty}$, for which $a_4=4$ and \[\frac{1}{a_1a_2a_3}+\frac{1}{a_2a_3a_4}+\cdots+\frac{1}{a_na_{n+1}a_{n+2}}=\frac{(n+3)a_n}{4a_{n+1}a_{n+2}}\] for all natural $n \geq 2$. Peter Boyvalenkov

2

Problem 5. Denote with $d(a,b)$ the numbers of the divisors of natural $a$, which are greater or equal to $b$. Find all natural $n$, for which $d(3n+1,1)+d(3n+2,2)+\ldots+d(4n,n)=2006.$ Ivan Landgev

3

Problem 6. Let $m\geq 5$ and $n$ are given natural numbers, and $M$ is regular $2n+1$-gon. Find the number of the convex $m$-gons with vertices among the vertices of $M$, who have at least one acute angle. Alexandar Ivanov