Problem

Source: Bulgarian TST2/2006 Problem 4

Tags: induction, algebra unsolved, algebra



Find all sequences of positive integers $\{a_n\}_{n=1}^{\infty}$, for which $a_4=4$ and \[\frac{1}{a_1a_2a_3}+\frac{1}{a_2a_3a_4}+\cdots+\frac{1}{a_na_{n+1}a_{n+2}}=\frac{(n+3)a_n}{4a_{n+1}a_{n+2}}\] for all natural $n \geq 2$. Peter Boyvalenkov