Problem

Source: Bulgarian TST2/2006 Problem 2

Tags: algebra unsolved, algebra



a) Let $\{a_n\}_{n=1}^\infty$ is sequence of integers bigger than 1. Proove that if $x>0$ is irrational, then $\ds x_n>\frac{1}{a_{n+1}}$ for infinitely many $n$, where $x_n$ is fractional part of $a_na_{n-1}\dots a_1x$. b)Find all sequences $\{a_n\}_{n=1}^\infty$ of positive integers, for which exist infinitely many $x\in(0,1)$ such that $\ds x_n>\frac{1}{a_{n+1}}$ for all $n$. Nikolai Nikolov, Emil Kolev