On the two sides of the road two lines of trees are planted. On every tree, the number of oaks among itself and its neighbors is written. (For the first and last trees, this is the number of oaks among itself and its only neighbor). Prove that if the two sequences of numbers on the trees are equal, then sequnces of trees on the two sides of the road are equal Proposed by A. Khrabrov, D. Rostovski
2000 Saint Petersburg Mathematical Olympiad
9th Grade
Let $AA_1$ and $CC_1$ be altitudes of acute angled triangle $ABC$. A point $D$ is chosen on $AA_1$ such that $A_1D=C_1D$. Let $E$ be the midpoint of $AC$. Prove that points $A$, $C_1$, $D$, $E$ are concylic. Proposed by S. Berlov
Let $P(x)=x^{2000}-x^{1000}+1$. Do there exist distinct positive integers $a_1,\dots,a_{2001}$ such that $a_ia_j|P(a_i)P(a_j)$ for all $i\neq j$? Proposed by A. Baranov
On a Cartesian plane 101 planes are drawn and all points of intersection are labeled. Is it possible, that for every line, 50 of the points have positive coordinates and 50 of the points have negative coordinates Proposed by S. Ivanov
The numbers $1,2,\dots,2000$ are written on the board. Two players are playing a game with alternating moves. A move consists of erasing two number $a,b$ and writing $a^b$. After some time only one number is left. The first player wins, if the numbers last digit is $2$, $7$ or $8$. If not, the second player wins. Who has a winning strategy? Proposed by V. Frank
Excircle of $ABC$ is tangent to the side $BC$ at point $K$ and is tangent to the extension of $AB$ at point $L$. Another excircle is tangent to extensions of sides $AB$ and $BC$ at points $M$ and $N$. Lines $KL$ and $MN$ intersect at point $X$. Prove that $CX$ is the bisector of angle $ACN$. Proposed by S. Berlov
Define a complexity of a set $a_1,a_2,\dots,$ consisting of 0 and 1 to be the smallest positive integer $k$ such that for some positive integers $\epsilon_1,\epsilon_2,\dots, \epsilon_k$ each number of the sequence $a_n$, $n>k$, has the same parity as $\epsilon_1 a_{n-1}+\epsilon_2 a_{n-2}+\dots+\epsilon_k a_{n-k}$. Sequence $a_1,a_2,\dots,$ has a complexity of $1000$. What is the complexity of sequence $1-a_1,1-a_2,\dots,$. Proposed by A. Kirichenko
10th Grade
Sequences $x_1,x_2,\dots,$ and $y_1,y_2,\dots,$ are defined with $x_1=\dfrac{1}{8}$, $y_1=\dfrac{1}{10}$ and $x_{n+1}=x_n+x_n^2$, $y_{n+1}=y_n+y_n^2$. Prove that $x_m\neq y_n$ for all $m,n\in\mathbb{Z}^{+}$. Proposed by A. Golovanov
Let $AA_1$ and $BB_1$ be the altitudes of acute angled triangle $ABC$. Points $K$ and $M$ are midpoints of $AB$ and $A_1B_1$ respectively. Segments $AA_1$ and $KM$ intersect at point $L$. Prove that points $A$, $K$, $L$ and $B_1$ are noncyclic. Proposed by S. Berlov
See 9.4 - 10.3
The number $N$ is the product of $200$ distinct positive integers. Prove that it has at least 19901 distinct divisors (including 0 and itself). Proposed by A. Golovanov
Cells of a $2000\times2000$ board are colored according to the following rules: 1)At any moment a cell can be colored, if none of its neighbors are colored 2)At any moment a $1\times2$ rectangle can be colored, if exactly two of its neighbors are colored. 3)At any moment a $2\times2$ squared can be colored, if 8 of its neighbors are colored (Two cells are considered to be neighboring, if they share a common side). Can the entire $2000\times2000$ board be colored? Proposed by K. Kohas
One of the excircles of triangle $ABC$ is tangent to the side $AB$ and to the extensions of sides $CA$ and $CB$ at points $C_1$, $B_1$ and $A_1$ respectively. Another excircle is tangent to side $AB$ and to the extensions of sides $BA$ and $BC$ at points $B_2$, $C_2$ and $A_2$ respectively. Line $A_1B_1$ and $A_2B_2$ intersect at point $P$,. lines $A_1C_1$ and $A_2C_2$ intersect at point $Q$. Prove that the points $A$, $P$, $Q$ are collinear Proposed by S. Berlov
We'll call a positive integer "almost prime", if it is not divisible by any prime from the interval $[3,19]$. We'll call a number "very non-prime", if it has at least 2 primes from interval $[3,19]$ dividing it. What is the greatest amount of almost prime numbers can be selected, such that the sum of any two of them is a very non-prime number? Proposed by S. Berlov, S. Ivanov
11th Grade
An equilateral triangle with side length 9 is divided into 81 congruent triangles with segments which are parallel to the sides of the triangle. Prove that it cannot be divided into more than 18 parallelograms with sides 1 and 2. Proposed by O.Vanyushina
Point $O$ is the origin of a space. Points $A_1, A_2,\dots, A_n$ have nonnegative coordinates. Prove the following inequality: $$|\overrightarrow{OA_1}|+|\overrightarrow {OA_2}|+\dots+|\overrightarrow {OA_n}|\leq \sqrt{3}|\overrightarrow {OA_1}+\overrightarrow{OA_2}+\dots+\overrightarrow{OA_n}|$$ Proposed by A. Khrabrov
Every month a forester Ermolay has planted 2000 trees along a fence. On every tree, he has written how many oaks there are among itself and trees at his right and left. This way a sequence of 2000 numbers was created. How many distinct sequences could the forester Ermolay get? (oak is a certain type of tree) Proposed by A. Khrabrov, D.Rostovski
Let $P(x)=x^{2000}-x^{1000}+1$. Prove that there don't exist 8002 distinct positive integers $a_1,\dots,a_{8002}$ such that $a_ia_ja_k|P(a_i)P(a_j)P(a_k)$ for all $i\neq j\neq k$. Proposed by A. Baranov
Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of an acute angled triangle $ABC$. On the side $BC$ point $K$ is taken such that $\angle BB_1K=\angle A$. On the side $AB$ a point $M$ is taken such that $\angle BB_1M\angle C$. Let $L$ be the intersection of $BB_1$ and $A_1C_1$. Prove that the quadrilateral $B_1KLM$ is circumscribed. Proposed by A. Khrabrov, D. Rostovski
What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them. Proposed by D. Karpov
It is known that for irrational numbers $\alpha$, $\beta$, $\gamma$, $\delta$ and for any positive integer $n$ the following is true: $$[n\alpha]+[n\beta]=[n\gamma]+[n\delta]$$Does this mean that sets $\{\alpha,\beta\}$ and $\{\gamma,\delta\}$ are equal? (As usual $[x]$ means the greatest integer not greater than $x$).