One of the excircles of triangle $ABC$ is tangent to the side $AB$ and to the extensions of sides $CA$ and $CB$ at points $C_1$, $B_1$ and $A_1$ respectively. Another excircle is tangent to side $AB$ and to the extensions of sides $BA$ and $BC$ at points $B_2$, $C_2$ and $A_2$ respectively. Line $A_1B_1$ and $A_2B_2$ intersect at point $P$,. lines $A_1C_1$ and $A_2C_2$ intersect at point $Q$. Prove that the points $A$, $P$, $Q$ are collinear Proposed by S. Berlov