Problem

Source: St. Petersburg MO 2000, 9th grade, P3

Tags: number theory, Polynomials, integer polynomials, Existence, St. Petersburg MO



Let $P(x)=x^{2000}-x^{1000}+1$. Do there exist distinct positive integers $a_1,\dots,a_{2001}$ such that $a_ia_j|P(a_i)P(a_j)$ for all $i\neq j$? Proposed by A. Baranov