Problem

Source: St. Petersburg MO 2000, 10th grade, P1

Tags: algebra, sequances



Sequences $x_1,x_2,\dots,$ and $y_1,y_2,\dots,$ are defined with $x_1=\dfrac{1}{8}$, $y_1=\dfrac{1}{10}$ and $x_{n+1}=x_n+x_n^2$, $y_{n+1}=y_n+y_n^2$. Prove that $x_m\neq y_n$ for all $m,n\in\mathbb{Z}^{+}$. Proposed by A. Golovanov