Problem

Source: St. Petersburg MO 2000, 10th grade, P5

Tags: combinatorics, grids, Coloring, table, Invariants, geometry, rectangle



Cells of a $2000\times2000$ board are colored according to the following rules: 1)At any moment a cell can be colored, if none of its neighbors are colored 2)At any moment a $1\times2$ rectangle can be colored, if exactly two of its neighbors are colored. 3)At any moment a $2\times2$ squared can be colored, if 8 of its neighbors are colored (Two cells are considered to be neighboring, if they share a common side). Can the entire $2000\times2000$ board be colored? Proposed by K. Kohas