Let $O$ be the center of the circle $\omega$, and let $A$ be a point inside this circle, different from $O$. Find all points $P$ on the circle $\omega$ for which the angle $\angle OPA$ acquires the greatest value.
Ukraine Correspondence MO - geometry
missing I-VII (before 2003)
In the triangle $ABC$, $D$ is the midpoint of $AB$, and $E$ is the point on the side $BC$, for which $CE = \frac13 BC$. It is known that $\angle ADC =\angle BAE$. Find $\angle BAC$.
Let $ABCDEF$ be a convex hexagon, $P, Q, R$ be the intersection points of $AB$ and $EF$, $EF$ and $CD$, $CD$ and $AB$. $S, T,UV$ are the intersection points of $BC$ and $DE$, $DE$ and $FA$, $FA$ and $BC$, respectively. Prove that if $$\frac{AB}{PR}=\frac{CD}{RQ}=\frac{EF}{QP},$$then $$\frac{BC}{US}=\frac{DE}{ST}=\frac{FA}{TU}.$$
A circle is drawn on the plane. How to use only a ruler to draw a perpendicular from a given point outside the circle to a given line passing through the center of this circle?
The extensions of the sides $AB$ and $CD$ of the trapezoid $ABCD$ intersect at point $E$. Denote by $H$ and $G$ the midpoints of $BD$ and $AC$. Find the ratio of the area $AEGH$ to the area $ABCD$.
In an isosceles triangle $ABC$ ($AB = AC$), the bisector of the angle $B$ intersects $AC$ at point $D$ such that $BC = BD + AD$. Find $\angle A$.
The bisectors of the angles $A$ and $B$ of the triangle $ABC$ intersect the sides $BC$ and $AC$ at points $D$ and $E$. It is known that $AE + BD = AB$. Find the angle $\angle C$.
Let $O$ be the point of intersection of the diagonals of the trapezoid $ABCD$ with the bases $AB$ and $CD$. It is known that $\angle AOB = \angle DAB = 90^o$. On the sides $AD$ and $BC$ take the points $E$ and $F$ so that $EF\parallel AB$ and $EF = AD$. Find the angle $\angle AOE$.
Let the circle $\omega$ be circumscribed around the triangle $\vartriangle ABC$ with right angle $\angle A$. Tangent to the circle $\omega$ at point $A$ intersects the line $BC$ at point $D$. Point $E$ is symmetric to $A$ with respect to the line $BC$. Let $K$ be the foot of the perpendicular drawn from point $A$ on $BE$, $L$ the midpoint of $AK$. The line $BL$ intersects the circle $\omega$ for the second time at the point $N$. Prove that the line $BD$ is tangent to the circle circumscribed around the triangle $\vartriangle ADM$.
Find the locus of the points of intersection of the altitudes of the triangles inscribed in a given circle.
Let $D$ and $E$ be the midpoints of the sides $BC$ and $AC$ of a right triangle $ABC$. Prove that if $\angle CAD=\angle ABE$, then $$\frac{5}{6} \le \frac{AD}{AB}\le \frac{\sqrt{73}}{10}.$$
Let $ABC$ be an isosceles triangle ($AB=AC$). An arbitrary point $M$ is chosen on the extension of the $BC$ beyond point $B$. Prove that the sum of the radius of the circle inscribed in the triangle $AMB$ and the radius of the circle tangent to the side $AC$ and the extensions of the sides $AM, CM$ of the triangle $AMC$ does not depend on the choice of point $M$.
Let $ABC$ be an isosceles triangle ($AB = AC$), $D$ be the midpoint of $BC$, and $M$ be the midpoint of $AD$. On the segment $BM$ take a point $N$ such that $\angle BND = 90^o$. Find the angle $ANC$.
In triangle $ABC$, the lengths of all sides are integers, $\angle B=2 \angle A$ and $\angle C> 90^o$. Find the smallest possible perimeter of this triangle.
Denote by $B_1$ and $C_1$, the midpoints of the sides $AB$ and $AC$ of the triangle $ABC$. Let the circles circumscribed around the triangles $ABC_1$ and $AB_1C$ intersect at points $A$ and $P$, and let the line $AP$ intersect the circle circumscribed around the triangle $ABC$ at points $A$ and $Q$. Find the ratio $\frac{AQ}{AP}$.
On the sides $AC$ and $AB$ of the triangle $ABC$, the points $D$ and $E$ were chosen such that $\angle ABD =\angle CBD$ and $3 \angle ACE = 2\angle BCE$. Let $H$ be the point of intersection of $BD$ and $CE$, and $CD = DE = CH$. Find the angles of triangle $ABC$.
Let $ABCD$ be a parallelogram. A circle with diameter $AC$ intersects line $BD$ at points $P$ and $Q$. The perpendicular on $AC$ passing through point $C$, intersects lines $AB$ and $AD$ at points $X$ and $Y$, respectively. Prove that the points $P, Q, X$ and $Y$ lie on the same circle.
A right triangle is drawn on the plane. How to use only a compass to mark two points, such that the distance between them is equal to the diameter of the circle inscribed in this triangle?
Let $ABCDE$ be a convex pentagon such that $AE\parallel BC$ and $\angle ADE = \angle BDC$. The diagonals $AC$ and $BE$ intersect at point $F$. Prove that $\angle CBD= \angle ADF$.
In triangle $ABC$, the length of the angle bisector $AD$ is $\sqrt{BD \cdot CD}$. Find the angles of the triangle $ABC$, if $\angle ADB = 45^o$.
An arbitrary point $D$ was marked on the median $BM$ of the triangle $ABC$. It is known that the point $DE\parallel AB$ and $CE \parallel BM$. Prove that $BE = AD$
Let $ABC$ be an acute-angled triangle in which $\angle BAC = 60^o$ and $AB> AC$. Let $H$ and $I$ denote the points of intersection of the altitudes and angle bisectors of this triangle, respectively. Find the ratio $\angle ABC: \angle AHI$.
The kid cut out of grid paper with the side of the cell $1$ rectangle along the grid lines and calculated its area and perimeter. Carlson snatched his scissors and cut out of this rectangle along the lines of the grid a square adjacent to the boundary of the rectangle. - My rectangle ... - kid sobbed. - There is something strange about this figure! - Nonsense, do not mention it - Carlson said - waving his hand carelessly. - Here you see, in this figure the perimeter is the same as the area of the rectangle was, and the area is the same as was the perimeter! What size square did Carlson cut out?
Let $ABCD$ be a trapezoid in which $AB \parallel CD$ and $AB = 2CD$. A line $\ell$ perpendicular to $CD$ was drawn through point $C$. A circle with center at point $D$ and radius $DA$ intersects line $\ell$ at points $P$ and $Q$. Prove that $AP \perp BQ$.
On the diagonals $AC$ and $CE$ of a regular hexagon $ABCDEF$ with side $1$ we mark points$ M$ and $N$ such that $AM = CN = a$. Find $a$ if the points $B, M, N$ lie on the same line.
In a quadrilateral $ABCD$, the diagonals are perpendicular and intersect at the point $S$. Let $K, L, M$, and $N$ be points symmetric to $S$ with respect to the lines $AB, BC, CD$, and $DA$, respectively, $BN$ intersects the circumcircle of the triangle $SKN$ at point $E$, and $BM$ intersects circumscribed the circle of the triangle $SLM$ at the point $F$. Prove that the quadrilateral $EFLK$ is cyclic .
Let $O$ and $H$ be the center of the circumcircle and the point of intersection of the altitudes of the acute triangle $ABC$ respectively, $D$ be the foot of the altitude drawn to $BC$, and $E$ be the midpoint of $AO$. Prove that the circumcircle of the triangle $ADE$ passes through the midpoint of the segment $OH$.
The diagonals $AC$ and $BD$ of the cyclic quadrilateral $ABCD$ intersect at a point O. It is known that $\angle BAD = 60^o$ and $AO = 3OC$. Prove that the sum of some two sides of a quadrilateral is equal to the sum of the other two sides.
An arbitrary point $D$ is marked on the hypotenuse $AB$ of a right triangle $ABC$. The circle circumscribed around the triangle $ACD$ intersects the line $BC$ at the point $E$ for the second time, and the circle circumscribed around the triangle $BCD$ intersects the line $AC$ for the second time at the point $F$. Prove that the line $EF$ passes through the point $D$.
Let $E$ be the point of intersection of the diagonals of the cyclic quadrilateral $ABCD$, and let $K, L, M$ and $N$ be the midpoints of the sides $AB, BC, CD$ and $DA$, respectively. Prove that the radii of the circles circumscribed around the triangles $KLE$ and $MNE$ are equal.
Given a triangle $ABC$. The circle $\omega_1$ passes through the vertex $B$ and touches the side $AC$ at the point $A$, and the circle $\omega_2$ passes through the vertex $C$ and touches the side $AB$ at the point $A$. The circles $\omega_1$ and $\omega_2$ intersect a second time at the point $D$. The line $AD$ intersects the circumcircle of the triangle $ABC$ at point $E$. Prove that $D$ is the midpoint of $AE$..
Krut and Vert go by car from point $A$ to point $B$. The car leaves $A$ in the direction of $B$, but every $3$ km of the road Krut turns $90^o$ to the left, and every $7$ km of the road Vert turns $90^o$ to the right ( if they try to turn at the same time, the car continues to go in the same direction). Will Krut and Vert be able to get to $B$ if the distance between $A$ and $B$ is $100$ km?
Let $ABC$ be an isosceles triangle ($AB = AC$). The points $D$ and $E$ were marked on the ray $AC$ so that $AC = 2AD$ and $AE = 2AC$. Prove that $BC$ is the bisector of the angle $\angle DBE$.
In the triangle $ABC$, it is known that $AC <AB$. Let $\ell$ be tangent to the circumcircle of triangle $ABC$ drawn at point $A$. A circle with center $A$ and radius $AC$ intersects segment $AB$ at point $D$, and line $\ell$ at points $E$ and $F$. Prove that one of the lines $DE$ and $DF$ passes through the center inscribed circle of triangle $ABC$.
Let $\omega$ be the circumscribed circle of triangle $ABC$, and let $\omega'$ 'be the circle tangent to the side $BC$ and the extensions of the sides $AB$ and $AC$. The common tangents to the circles $\omega$ and $\omega'$ intersect the line $BC$ at points $D$ and $E$. Prove that $\angle BAD = \angle CAE$.
On the sides $BC, AC$ and $AB$ of the equilateral triangle $ABC$ mark the points $D, E$ and $F$ so that $\angle AEF = \angle FDB$ and $\angle AFE = \angle EDC$. Prove that $DA$ is the bisector of the angle $EDF$.
Let $ABC$ be an non- isosceles triangle, $H_a$, $H_b$, and $H_c$ be the feet of the altitudes drawn from the vertices $A, B$, and $C$, respectively, and $M_a$, $M_b$, and $M_c$ be the midpoints of the sides $BC$, $CA$, and $AB$, respectively. The circumscribed circles of triangles $AH_bH_c$ and $AM_bM_c$ intersect for second time at point $A'$. The circumscribed circles of triangles $BH_cH_a$ and $BM_cM_a$ intersect for second time at point $B'$. The circumscribed circles of triangles $CH_aH_b$ and $CM_aM_b$ intersect for second time at point $C'$. Prove that points $A', B'$ and $C'$ lie on the same line.
The circle $\omega$ inscribed in an isosceles triangle $ABC$ ($AC = BC$) touches the side $BC$ at point $D$ .On the extensions of the segment $AB$ beyond points $A$ and $B$, respectively mark the points $K$ and $L$ so that $AK = BL$, The lines $KD$ and $LD$ intersect the circle $\omega$ for second time at points $G$ and $H$, respectively. Prove that point $A$ belongs to the line $GH$.
Inside the square $ABCD$ mark the point $P$, for which $\angle BAP = 30^o$ and $\angle BCP = 15^o$. The point $Q$ was chosen so that $APCQ$ is an isosceles trapezoid ($PC\parallel AQ$). Find the angles of the triangle $CAM$, where $M$ is the midpoint of $PQ$.
On the midline of the isosceles trapezoid $ABCD$ ($BC \parallel AD$) find the point $K$, for which the sum of the angles $\angle DAK + \angle BCK$ will be the smallest.
Inside the parallelogram $ABCD$, choose a point $P$ such that $\angle APB+ \angle CPD= \angle BPC+ \angle APD$. Prove that there exists a circle tangent to each of the circles circumscribed around the triangles $APB$, $BPC$, $CPD$ and $APD$.
Let $AD$ and $AE$ be the altitude and median of triangle $ABC$, in with $\angle B = 2\angle C$. Prove that $AB = 2DE$.
Let $ABC$ be an acute-angled triangle in which $AB <AC$. On the side $BC$ mark a point $D$ such that $AD = AB$, and on the side $AB$ mark a point $E$ such that the segment $DE$ passes through the orthocenter of triangle $ABC$. Prove that the center of the circumcircle of triangle $ADE$ lies on the segment $AC$.
Given a triangle $ABC$. Construct a point $D$ on the side $AB$ and point $E$ on the side $AC$ so that $BD = CE$ and $\angle ADC = \angle BEC$
The symbol of the Olympiad shows $5$ regular hexagons with side $a$, located inside a regular hexagon with side $b$. Find ratio $\frac{a}{b}$.
Let $O$ be the center of the circle circumscribed around the acute triangle $ABC$, and let $N$ be the midpoint of the arc $ABC$ of this circle. On the sides $AB$ and $BC$ mark points $D$ and $E$ respectively, such that the point $O$ lies on the segment $DE$. The lines $DN$ and $BC$ intersect at the point $P$, and the lines $EN$ and $AB$ intersect at the point $Q$. Prove that $PQ \perp AC$.
Let $ABC$ be an acute triangle, $D$ be the midpoint of $BC$. Bisectors of angles $ADB$ and $ADC$ intersect the circles circumscribed around the triangles $ADB$ and $ADC$ at points $E$ and $F$, respectively. Prove that $EF\perp AD$.
The diagonals of the cyclic quadrilateral $ABCD$ intersect at the point $E$. Let $P$ and $Q$ are the centers of the circles circumscribed around the triangles $BCE$ and $DCE$, respectively. A straight line passing through the point $P$ parallel to $AB$, and a straight line passing through the point $Q$ parallel to $AD$, intersect at the point $R$. Prove that the point $R$ lies on segment $AC$.
Let $I$ be the center of a circle inscribed in triangle $ABC$, in which $\angle BAC = 60 ^o$ and $AB \ne AC$. The points $D$ and $E$ were marked on the rays $BA$ and $CA$ so that $BD = CE = BC$. Prove that the line $DE$ passes through the point $I$.
Let $D$ be a point on the side $AB$ of the triangle $ABC$ such that $BD = CD$, and let the points $E$ on the side $BC$ and $F$ on the extension $AC$ beyond the point $C$ be such that $EF\parallel CD$. The lines $AE$ and $CD$ intersect at the point $G$. Prove that $BC$ is the bisector of the angle $FBG$.