parmenides51 wrote:
Let $AD$ and $AE$ be the altitude and median of triangle $ABC$, in with $\angle B = 2\angle C$. Prove that $AB = 2DE$.
$\color{blue}\boxed{\textbf{Proof:}}$
$\color{blue}\rule{24cm}{0.3pt}$
Let $T$ be a point in $BC$ such that $\angle ATB=\alpha$
$$\Rightarrow \angle TAB=\alpha$$$$\Rightarrow TB=AB \text{ and } AT=AC...(I)$$$$\Rightarrow TD=DC...(II)$$$$BE=EC=a, ED=b$$$$\Rightarrow BD=a-b$$By $(II):$
$$\Rightarrow TD=a+b$$$$\Rightarrow TB=2b$$By $(I):$
$$\Rightarrow AB=2b=2(DE)_\blacksquare$$$\color{blue}\rule{24cm}{0.3pt}$