Problem

Source: 2003 VIII All-Ukrainian Correspondence MO of magazine ''In the World of Mathematics'', grades 5-11 p11

Tags: geometry, hexagon, ratio



Let $ABCDEF$ be a convex hexagon, $P, Q, R$ be the intersection points of $AB$ and $EF$, $EF$ and $CD$, $CD$ and $AB$. $S, T,UV$ are the intersection points of $BC$ and $DE$, $DE$ and $FA$, $FA$ and $BC$, respectively. Prove that if $$\frac{AB}{PR}=\frac{CD}{RQ}=\frac{EF}{QP},$$then $$\frac{BC}{US}=\frac{DE}{ST}=\frac{FA}{TU}.$$