Problem

Source: 2011 All-Ukrainain Correspondence MO of magazine ''In the World of Mathematics'', grades 5-12 p11

Tags: Cyclic, geometry, Symmetric, Ukraine Correspondence



In a quadrilateral $ABCD$, the diagonals are perpendicular and intersect at the point $S$. Let $K, L, M$, and $N$ be points symmetric to $S$ with respect to the lines $AB, BC, CD$, and $DA$, respectively, $BN$ intersects the circumcircle of the triangle $SKN$ at point $E$, and $BM$ intersects circumscribed the circle of the triangle $SLM$ at the point $F$. Prove that the quadrilateral $EFLK$ is cyclic .