The diagonals of the cyclic quadrilateral $ABCD$ intersect at the point $E$. Let $P$ and $Q$ are the centers of the circles circumscribed around the triangles $BCE$ and $DCE$, respectively. A straight line passing through the point $P$ parallel to $AB$, and a straight line passing through the point $Q$ parallel to $AD$, intersect at the point $R$. Prove that the point $R$ lies on segment $AC$.
Problem
Source: 2020 XXV All-Ukrainian Correspondence MO grades 5-12 p11
Tags: geometry, collinear, cyclic quadrilateral, Ukraine Correspondence