2018 Mexico National Olympiad

Day 1

1

Let $A$ and $B$ be two points on a line $\ell$, $M$ the midpoint of $AB$, and $X$ a point on segment $AB$ other than $M$. Let $\Omega$ be a semicircle with diameter $AB$. Consider a point $P$ on $\Omega$ and let $\Gamma$ be the circle through $P$ and $X$ that is tangent to $AB$. Let $Q$ be the second intersection point of $\Omega$ and $\Gamma$. The internal angle bisector of $\angle PXQ$ intersects $\Gamma$ at a point $R$. Let $Y$ be a point on $\ell$ such that $RY$ is perpendicular to $\ell$. Show that $MX > XY$

2

For each positive integer $m$, we define $L_m$ as the figure that is obtained by overlapping two $1 \times m$ and $m \times 1$ rectangles in such a way that they coincide at the $1 \times 1$ square at their ends, as shown in the figure. [asy][asy] pair h = (1, 0), v = (0, 1), o = (0, 0); for(int i = 1; i < 5; ++i) { o = (i*i/2 + i, 0); draw(o -- o + i*v -- o + i*v + h -- o + h + v -- o + i*h + v -- o + i*h -- cycle); string s = "$L_" + (string)(i) + "$"; label(s, o + ((i / 2), -1)); for(int j = 1; j < i; ++j) { draw(o + j*v -- o + j*v + h); draw(o + j*h -- o + j*h + v); } } label("...", (18, 0.5)); [/asy][/asy] Using some figures $L_{m_1}, L_{m_2}, \dots, L_{m_k}$, we cover an $n \times n$ board completely, in such a way that the edges of the figure coincide with lines in the board. Among all possible coverings of the board, find the minimal possible value of $m_1 + m_2 + \dots + m_k$. Note: In covering the board, the figures may be rotated or reflected, and they may overlap or not be completely contained within the board.

3

A sequence $a_2, a_3, \dots, a_n$ of positive integers is said to be campechana, if for each $i$ such that $2 \leq i \leq n$ it holds that exactly $a_i$ terms of the sequence are relatively prime to $i$. We say that the size of such a sequence is $n - 1$. Let $m = p_1p_2 \dots p_k$, where $p_1, p_2, \dots, p_k$ are pairwise distinct primes and $k \geq 2$. Show that there exist at least two different campechana sequences of size $m$.

Day 2

4

Let $n\geq 2$ be an integer. For each $k$-tuple of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+\cdots +a_k=n$, consider the sums $S_i=1+2+\ldots +a_i$ for $1\leq i\leq k$. Determine, in terms of $n$, the maximum possible value of the product $S_1S_2\cdots S_k$. Proposed by Misael Pelayo

5

Let $n\geq 5$ an integer and consider a regular $n$-gon. Initially, Nacho is situated in one of the vertices of the $n$-gon, in which he puts a flag. He will start moving clockwise. First, he moves one position and puts another flag, then, two positions and puts another flag, etcetera, until he finally moves $n-1$ positions and puts a flag, in such a way that he puts $n$ flags in total. ¿For which values of $n$, Nacho will have put a flag in each of the $n$ vertices?

6

Let $ABC$ be an acute-angled triangle with circumference $\Omega$. Let the angle bisectors of $\angle B$ and $\angle C$ intersect $\Omega$ again at $M$ and $N$. Let $I$ be the intersection point of these angle bisectors. Let $M'$ and $N'$ be the respective reflections of $M$ and $N$ in $AC$ and $AB$. Prove that the center of the circle passing through $I$, $M'$, $N'$ lies on the altitude of triangle $ABC$ from $A$. Proposed by Victor Domínguez and Ariel García