Problem

Source: Mexico National Olympiad 2018 Problem 6

Tags: geometry, incenter, arc midpoint, angle bisector, geometric transformation, reflection, circumcircle



Let $ABC$ be an acute-angled triangle with circumference $\Omega$. Let the angle bisectors of $\angle B$ and $\angle C$ intersect $\Omega$ again at $M$ and $N$. Let $I$ be the intersection point of these angle bisectors. Let $M'$ and $N'$ be the respective reflections of $M$ and $N$ in $AC$ and $AB$. Prove that the center of the circle passing through $I$, $M'$, $N'$ lies on the altitude of triangle $ABC$ from $A$. Proposed by Victor Domínguez and Ariel García