Problem

Source: Mexico National Olympiad 2018 Problem 1

Tags: inequalities, geometry, angle bisector



Let $A$ and $B$ be two points on a line $\ell$, $M$ the midpoint of $AB$, and $X$ a point on segment $AB$ other than $M$. Let $\Omega$ be a semicircle with diameter $AB$. Consider a point $P$ on $\Omega$ and let $\Gamma$ be the circle through $P$ and $X$ that is tangent to $AB$. Let $Q$ be the second intersection point of $\Omega$ and $\Gamma$. The internal angle bisector of $\angle PXQ$ intersects $\Gamma$ at a point $R$. Let $Y$ be a point on $\ell$ such that $RY$ is perpendicular to $\ell$. Show that $MX > XY$