Problem

Source: Mexico National Olympiad 2018 Problem 4

Tags: algebra, Inequality, maximum value, positive integers



Let $n\geq 2$ be an integer. For each $k$-tuple of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+\cdots +a_k=n$, consider the sums $S_i=1+2+\ldots +a_i$ for $1\leq i\leq k$. Determine, in terms of $n$, the maximum possible value of the product $S_1S_2\cdots S_k$. Proposed by Misael Pelayo