2007 Italy TST

Day 1

1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2

In a competition, there were $2n+1$ teams. Every team plays exatly once against every other team. Every match finishes with the victory of one of the teams. We call cyclical a 3-subset of team ${ A,B,C }$ if $A$ won against $B$, $B$ won against $C$ , $C$ won against $A$. (a) Find the minimum of cyclical 3-subset (depending on $n$); (b) Find the maximum of cyclical 3-subset (depending on $n$).

3

Find all $f: R \longrightarrow R$ such that \[f(xy+f(x))=xf(y)+f(x)\] for every pair of real numbers $x,y$.

Day 2

1

We have a complete graph with $n$ vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?

2

Let $ABC$ a acute triangle. (a) Find the locus of all the points $P$ such that, calling $O_{a}, O_{b}, O_{c}$ the circumcenters of $PBC$, $PAC$, $PAB$: \[\frac{ O_{a}O_{b}}{AB}= \frac{ O_{b}O_{c}}{BC}=\frac{ O_{c}O_{a}}{CA}\] (b) For all points $P$ of the locus in (a), show that the lines $AO_{a}$, $BO_{b}$ , $CO_{c}$ are cuncurrent (in $X$); (c) Show that the power of $X$ wrt the circumcircle of $ABC$ is: \[-\frac{ a^{2}+b^{2}+c^{2}-5R^{2}}4\] Where $a=BC$ , $b=AC$ and $c=AB$.

3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]