Find all $f: R \longrightarrow R$ such that \[f(xy+f(x))=xf(y)+f(x)\] for every pair of real numbers $x,y$.
Problem
Source: Italian TST , day 1, n°3
Tags: function, algebra, polynomial, algebra proposed, functional equation
01.06.2007 17:34
Step 1: Easy see that $f\equiv 0$ is a root. Now we will see at $f\not\equiv 0$. $f(xy+f(x))=xf(y)+f(x)(*)$ In (*) choose $x=y=-1$ then there exist $a$ such that $f(a)=0$, we have $a=0$. In fact, if $a\not = 0$ then choose $x=a,y=1$ have $f(1)=0$. Choose $y=1$ in (*) we have $f(x+f(x))=f(x)$ therefore $x+f(x)=x$ if $f(x)\not =0$. Contradiction! Note: If $f(m)=f(n)\not =0$ then $nf(m)+f(n)=mf(n)+f(m)$, so $m=n$. And we now have that $f(x)=0$ iff $x=0$ and $f$ is an injective function. P/S: olorin, where are you?
01.06.2007 18:35
i'm not very good at functional equations so please correct me if i'm wrong. denote $f(0)=c$. $x=0$ gives $f(c)=c$. also, $y=0$ gives $f(f(x))=cx+f(x)\quad (1)$. substitute $x=c$ into $(1)$ to get $f(f(c))=c^{2}+c$. but we already have $f(f(c))=f(c)=c$. so $c^{2}+c=c\iff c=0$. so $(1)$ implies $f(f(x))=f(x)$. as N.T.TUAN proved that $f$ is injective, we have $f(x)=x$.
01.06.2007 19:02
Oh, You are true! I think so
03.06.2007 20:13
can you use fixed points to solve this? :
03.06.2007 20:25
I don't think that method works in this problem!
13.06.2007 12:34
this is my solution im not sur: if we exgeng x and y we take f(xy+f(y))=yf(x)+f(y) (1) x=0 and y=0 f0f(0)=f(0) (2) lets x and y sush that f(x)=f(y) we have f(xy+f(x))=xf(x)+f(x)* and (1) lmplay f(xy+f(x))=yf(x)+f(x)** * and ** implay x=y or f(x)=0 x=y implay that f is injective so from (2) we have f(0)=0 if we take y=0 in the initial equation we find f0f(x)=xf(0)+f(x)=f(x) f0f(x)=f(x) and f is injective so f(x)=x to sum up f(x)=x or f(x)=0
16.06.2007 11:57
It is my solution!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f(x*y+f(x))=x*f(y)+f(x) Denote f(0)=c; if y=0--> f(f(x))=x*c+f(x); (1) if y=f(y)-->f(f(xy+f(x)))=f(x*f(y)+f(x))=x*f(f(y))+f(x) ,but from (1) f(f(xy+f(x)))=xyc+f(x)*c+f(xy+f(x))=xyc+f(x)*c+x*f(y)+f(x); That's why xyc+f(x)*c+x*f(y)+f(x)=x*f(f(y))+f(x)=xyc+x*f(y)+f(x) --> f(x)*c=0 either f(x)=0 for x is from R or c=f(0)=0 -->f(f(x))=f(x); (*) Now we will prove that f(a)=f(b)--> a=b; f(ab+f(a))=a*f(b)+f(a)=f(ab+f(b))=b*f(a)+f(b); So f(a)*(a+1)=f(a)*(b+1)--> a=b from (*) f(f(x))=f(x)-->f(x)=x; So either f(x)=x or f(x)=0;
19.11.2008 18:17
nayel wrote: $ f(f(x)) = f(x)$. as N.T.TUAN proved that $ f$ is injective, we have $ f(x) = x$. I don't understand this part. How does $ f$ injective and $ f(f(x)) = f(x)\forall x$ imply $ f(x) = x\forall x$? Wouldn't we need it to be surjective rather than injective? Anyway here's how I would finish the approach by N.T.TUAN: N.T.TUAN wrote: Easy see that $ f\equiv 0$ is a root. Now we will see at $ f\not\equiv 0$. $ f(xy + f(x)) = xf(y) + f(x)(*)$ Note: If $ f(m) = f(n)\not = 0$ then $ nf(m) + f(n) = mf(n) + f(m)$, so $ m = n$. In (*) choose $ x = y = - 1$ then there exist $ a$ such that $ f(a) = 0$, we have $ a = 0$. In fact, if $ a\not = 0$ then choose $ x = a,y = 1$ have $ f(1) = 0$. Choose $ y = 1$ in (*) we have $ f(x + f(x)) = f(x)$ therefore $ x + f(x) = x$ if $ f(x)\not = 0$. Contradiction! And we now have that $ f(x) = 0$ iff $ x = 0$ and $ f$ is an injective function. I shall only need that $ f(x) = 0$ iff $ x = 0$ Suppose $ x\neq 0$, $ y: = 1 - \frac {f(x)}{x}$. Then $ xy + f(x) = x\implies f(xy + f(x)) = f(x)\implies \text{(from (*))}\implies xf(y) = 0$ $ \implies f(y) = 0\implies y = 0\implies 1 - \frac {f(x)}{x} = 0\implies f(x) = x\forall x\neq 0$
19.11.2008 19:12
That $ f$ is injective is equivalent to $ f(a)=f(b)\iff a=b\,\forall a,b\in\mathbb R$. Hence $ f(f(x))=f(x)$ implies $ f(x)=x$ (here $ a: =f(x)$ and $ b: =x$).
19.11.2008 19:22
Thanks nayel for the explanation. I understand it now.
08.11.2011 22:16
Isin't the easiest way of solving a function equation, to solve the equation itself. I mean we know that for every x : (f(f(f(f.....(k))))) = f(k) = k. Then we would have f(xy) + f(f(x)) = f(xy) + f(x) which implies to: xy + x =xy + x. So, knowing that for every x and y the equation is true, we also know that for every "n" it is true. The our function would be: f(n)=n. Am I right?
14.04.2014 18:03
ggbg90 wrote: can you use fixed points to solve this? : The concept of fixed points could have been applied to this function if the question would have asked to prove that there are no polynomial solutions of this function of degree $\ge 2$.
14.04.2014 18:30
N.T.TUAN wrote:
$f(x+f(x))=f(x)$ therefore $x+f(x)=x$ if $f(x)\not =0$. Contradiction!
Sorry to bring up an old topic,but I think my question is logical.In N.T.TUAN's approach for proving the injecitivity of $f$,I think he used the fact that $f$ is injective.
23.05.2020 13:19
claim: $f$ is injective . proof: :suppose $f(a)=f(b)$ check $P(a,b) , P(b,a)$ we get : $ af(b)+f(a)=bf(a)+f(b) \implies a=b$ so let me back to main problem: $P(0,0) \implies f(f(0))=f(0) \implies f(0)=0$ check$P(x,0) \implies f(f(x))=f(x) \implies $ $ f(x)=x $
23.05.2020 22:05
arzhang2001 wrote: claim: $f$ is injective . proof: :suppose $f(a)=f(b)$ check $P(a,b) , P(b,a)$ we get : $ af(b)+f(a)=bf(a)+f(b) \implies a=b$ so let me back to main problem: $P(0,0) \implies f(f(0))=f(0) \implies f(0)=0$ check$P(x,0) \implies f(f(x))=f(x) \implies $ $ f(x)=x $ But $f(x)=0$ is a solution
28.10.2020 19:34
Ans: $f(x)=x$, $f(x)=0$. It is easy to see that these satisfy the equation, let $P(x,y)$ be the given assertion, we have \[P\left(x,\frac{x-f(x)}{x}\right)\implies xf\left(\frac{x-f(x)}{x}\right)=0 \ \ \ \forall x\ne 0\]\[P\left(\frac{x-f(x)}{x}, 0\right)\implies \left(1-\frac{x-f(x)}{x}\right)f(0)=0 \implies f(0)=0 \ \textrm{or} \ f(x)=0 \ \forall x\ne 0.\]If $f(x)=0 \ \forall x\ne 0$, then choose $x\ne 0,1$, \[P(x,0)\implies f(0)(1-x)=0\implies f(0)=0 \implies f(x)=0 \ \forall x\in \mathbb{R}.\]If $f(0)=0$, then we have $f\left(\frac{x-f(x)}{x}\right)=f(0)=0$, assume that we have $a,b\in \mathbb{R}$ such that $f(a)=f(b)=0$, $a\ne b$. Then, comparing $P(a,1)$ and $P(b,1)$ gives $af(1)=bf(1)=0\implies f(1)=0$, also $P(x,0)\implies f(f(x))=f(x)$. Now, $P(f(x),-1)\implies f(-1)f(x)=-f(x)$, we have already gotten $f(x)=0$, so $f(-1)=-1$ which further implies \[P(f(-1),x-1)\implies f(-x)=-f(x-1)-1.\]When $x=2$, $f(-2)=-1$, $P(-2,-2)\implies f(3)=1\implies f(3)=f(f(3))=f(1)=0$, a contradiction. $\blacksquare$
17.09.2021 04:40
Let $P(x,y)$ the assertion of the given F.E. $P(0,0)$ $$f(f(0))=f(0)$$$P(f(0),0)$ $$f(0)^2=0 \implies f(0)=0$$$P(x,0)$ $$f(f(x))=f(x)$$$P(f(x),-1)$ $$f(x)(f(-1)+1)=0 \implies f(x)=0 \; \text{or} \; f(-1)=-1$$Now since $f(x)=0$ is a solution we will check what happens if $f(-1)=-1$. Let $a,b \ne 0$ be reals such that $f(a)=f(b)$ then by $P(a,b)-P(b,a)$ we have $a=b$ thus $f$ is injective. And with this we have thay since $P(x,0)$ gives $f(f(x))=f(x)$ we have by injectivity $f(x)=x$ thus we are done
18.09.2021 03:00
Quote: by $P(a,b)-P(b,a)$ we have $a=b$ I got $af(a)=bf(a)$.
18.09.2021 03:01
Let $P(x,y)$ be the assertion $f(xy+f(x))=xf(y)+f(x)$. Let $f(a)=f(b)$ for some $a,b$ such that $f(a)\ne0$. $P(a,b)-P(b,a)\Rightarrow af(a)=bf(a)$ Assume $f(0)\ne0$. $P(0,0)\Rightarrow f(0)=0$, contradiction. Hence $f(0)=0$. $P(x,0)\Rightarrow f(f(x))=f(x)$ If $f(x)\ne0$ then $f(x)=x$ by partial injectivity. Let $f(a)=0$ and $f(b)=b$ for some $a,b\ne0$: $P(b,a)\Rightarrow f(ab+b)=b\notin\{0,ab+b\}$, contradiction. Thus either $\boxed{f(x)=0}$ or $\boxed{f(x)=x}$.
22.11.2021 06:36
$P(0,0): f(0)=0$. Suppose $f(a)=f(b)\ne0$. $P(a,b): f(ab+f(a))=af(a)+f(a)$. $P(b,a): f(ab+f(a))=bf(a)+f(a)$. Subtracting the two equations gives $a=b$. $P(x,0): f(f(x))=f(x)$, so $f(x)=x$ if $f(x)\ne0$. Thus, either $f(x)=0$ or $f(x)=x$. Suppose $f(a)=a$ and $f(b)=0$ and $a,b\ne0$. $P(a,b): f(ab+a)=a\implies ab+a=a\implies ab=0$, a contradiction. So the only solutions are $\boxed{f\equiv0}$ and $\boxed{f(x)=x\forall x\in\mathbb{R}}$, which both work.
10.03.2022 09:42
Claim: $f$ is injective. Proof : Assume $f(a_1) = f(a_2)$. $P(a_1,a_2) : f(a_1a_2 + f(a_1)) = a_1f(a_2) + f(a_1)$. $P(a_2,a_1) : f(a_1a_2 + f(a_2)) = a_2f(a_1) + f(a_2)$. so we have $a_1 = a_2$. $P(0,0) : f(f(0)) = f(0) \implies f(0) = 0$. $P(x,0) : f(f(x)) = f(x) \implies f(x) = x$ or $f(x)= c$. for $x=0$ we have $f(0) = 0$ so $c = 0$. Claim: $f(x) = x$ or $f(x) = 0$. Proof : Assume $f(z_1) = z_1$ and $f(z_2) = 0$. $P(z_1,z_2) : f(z_1z_2 + z_1) = z_1$ for both cases $f(z_1z_2 + z_1) = 0$ and $f(z_1z_2 + z_1) = z_1z_2 + z_1$ we have contradiction cause $z_1$ and $z_2$ are not constant. Answer: $f(x) = x, f(x) = 0$.
03.10.2023 12:09
1.assume $f$ nonconst then It is obvious see that $f$ injective $P(0,0)$ then $ff(0)=f(0)$ $P(f(0),0)$ then $f(0)=0$ $P(x,\frac{x-f(x)}{x})$ $f(\frac{x-f(x)} {x}) =0$ Then by injectivity $f(x) =x$ 2. Assume $f$ const then $f(x) =0$ And observe Pointwise trap.
04.10.2023 05:49
$f(f(x))=xf(0)+f(x)$ Case 1:$f\equiv0$ Case 2:$f\not\equiv0$ Then we prove that $f$ is injective If $f(a)=f(b),a\ne b$ $bf(a)+f(b)=f(ab+f(b))=f(ab+f(a))=af(b)+f(a)$ So $b=a$ Then $f(f(0))=f(0)\implies f(0)=0$ Then $f(f(x))=f(x)\implies f(x)=x$
06.10.2023 16:55
flower417477 wrote: $f(f(x))=xf(0)+f(x)$ Case 1:$f\equiv0$ Case 2:$f\not\equiv0$ Then we prove that $f$ is injective If $f(a)=f(b),a\ne b$ $bf(a)+f(b)=f(ab+f(b))=f(ab+f(a))=af(b)+f(a)$ So $b=a$ Then $f(f(0))=f(0)\implies f(0)=0$ Then $f(f(x))=f(x)\implies f(x)=x$ Not quite. You can only show injective for non-zero values of $f$. ($bf(a) = af(b) \implies f(b)= f(a)=0\text{ or }a=b$ Therefore in your last line you enter the point-wise trap $f(x)\in\{0,x\}$