Problem

Source: Italian TST , day 1, n°2

Tags: modular arithmetic, combinatorics proposed, combinatorics



In a competition, there were $2n+1$ teams. Every team plays exatly once against every other team. Every match finishes with the victory of one of the teams. We call cyclical a 3-subset of team ${ A,B,C }$ if $A$ won against $B$, $B$ won against $C$ , $C$ won against $A$. (a) Find the minimum of cyclical 3-subset (depending on $n$); (b) Find the maximum of cyclical 3-subset (depending on $n$).