Problem

Source: Italian TST , day 2, n°2

Tags: geometry, circumcircle, geometry proposed



Let $ABC$ a acute triangle. (a) Find the locus of all the points $P$ such that, calling $O_{a}, O_{b}, O_{c}$ the circumcenters of $PBC$, $PAC$, $PAB$: \[\frac{ O_{a}O_{b}}{AB}= \frac{ O_{b}O_{c}}{BC}=\frac{ O_{c}O_{a}}{CA}\] (b) For all points $P$ of the locus in (a), show that the lines $AO_{a}$, $BO_{b}$ , $CO_{c}$ are cuncurrent (in $X$); (c) Show that the power of $X$ wrt the circumcircle of $ABC$ is: \[-\frac{ a^{2}+b^{2}+c^{2}-5R^{2}}4\] Where $a=BC$ , $b=AC$ and $c=AB$.