1994 Taiwan National Olympiad

Day 1

1

Let $ABCD$ be a quadrilateral with $AD=BC$ and $\widehat{A}+\widehat{B}=120^{0}$. Let us draw equilateral $ACP,DCQ,DBR$ away from $AB$ . Prove that the points $P,Q,R$ are collinear.

2

Let $a,b,c$ are positive real numbers and $\alpha$ be any real number. Denote $f(\alpha)=abc(a^{\alpha}+b^{\alpha}+c^{\alpha}), g(\alpha)=a^{2+\alpha}(b+c-a)+b^{2+\alpha}(-b+c+a)+c^{2+\alpha}(b-c+a)$. Determine $\min{|f(\alpha)-g(\alpha)|}$ and $\max{|f(\alpha)-g(\alpha)|}$, if they are exists.

3

Let $a$ be a positive integer such that $5^{1994}-1\mid a$. Prove that the expression of $a$ in base $5$ contains at least $1994$ nonzero digits.

Day 2

4

Prove that there are infinitely many positive integers $n$ with the following property: For any $n$ integers $a_{1},a_{2},...,a_{n}$ which form in arithmetic progression, both the mean and the standard deviation of the set $\{a_{1},a_{2},...,a_{n}\}$ are integers. Remark. The mean and standard deviation of the set $\{x_{1},x_{2},...,x_{n}\}$ are defined by $\overline{x}=\frac{x_{1}+x_{2}+...+x_{n}}{n}$ and $\sqrt{\frac{\sum (x_{i}-\overline{x})^{2}}{n}}$, respectively.

5

Given $X=\{0,a,b,c\}$, let $M(X)=\{f|f: X\to X\}$ denote the set of all functions from $X$ into itself. An addition table on $X$ is given us follows: $+$ $0$ $a$ $b$ $c$ $0$ $0$ $a$ $b$ $c$ $a$ $a$ $0$ $c$ $b$ $b$ $b$ $c$ $0$ $a$ $c$ $c$ $b$ $a$ $0$ a)If $S=\{f\in M(X)|f(x+y+x)=f(x)+f(y)+f(x)\forall x,y\in X\}$, find $|S|$. b)If $I=\{f\in M(X)|f(x+x)=f(x)+f(x)\forall x\in X\}$, find $|I|$.

6

For $-1\leq x\leq 1$ and $n\in\mathbb N$ define $T_{n}(x)=\frac{1}{2^{n}}[(x+\sqrt{1-x^{2}})^{n}+(x-\sqrt{1-x^{2}})^{n}]$. a)Prove that $T_{n}$ is a monic polynomial of degree $n$ in $x$ and that the maximum value of $|T_{n}(x)|$ is $\frac{1}{2^{n-1}}$. b)Suppose that $p(x)=x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}\in\mathbb{R}[x]$ is a monic polynomial of degree $n$ such that $p(x)>-\frac{1}{2^{n-1}}$ forall $x$, $-1\leq x\leq 1$. Prove that there exists $x_{0}$, $-1\leq x_{0}\leq 1$ such that $p(x_{0})\geq\frac{1}{2^{n-1}}$.