Let $a,b,c$ are positive real numbers and $\alpha$ be any real number. Denote $f(\alpha)=abc(a^{\alpha}+b^{\alpha}+c^{\alpha}), g(\alpha)=a^{2+\alpha}(b+c-a)+b^{2+\alpha}(-b+c+a)+c^{2+\alpha}(b-c+a)$. Determine $\min{|f(\alpha)-g(\alpha)|}$ and $\max{|f(\alpha)-g(\alpha)|}$, if they are exists.