For $-1\leq x\leq 1$ and $n\in\mathbb N$ define $T_{n}(x)=\frac{1}{2^{n}}[(x+\sqrt{1-x^{2}})^{n}+(x-\sqrt{1-x^{2}})^{n}]$. a)Prove that $T_{n}$ is a monic polynomial of degree $n$ in $x$ and that the maximum value of $|T_{n}(x)|$ is $\frac{1}{2^{n-1}}$. b)Suppose that $p(x)=x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}\in\mathbb{R}[x]$ is a monic polynomial of degree $n$ such that $p(x)>-\frac{1}{2^{n-1}}$ forall $x$, $-1\leq x\leq 1$. Prove that there exists $x_{0}$, $-1\leq x_{0}\leq 1$ such that $p(x_{0})\geq\frac{1}{2^{n-1}}$.
Problem
Source: 3-rd Taiwanese Mathematical Olympiad 1994
Tags: algebra, polynomial, algebra proposed