Problem

Source: 3-rd Taiwanese Mathematical Olympiad 1994

Tags: geometry, cyclic quadrilateral, geometry unsolved



Let $ABCD$ be a quadrilateral with $AD=BC$ and $\widehat{A}+\widehat{B}=120^{0}$. Let us draw equilateral $ACP,DCQ,DBR$ away from $AB$ . Prove that the points $P,Q,R$ are collinear.