In a complete graph with $2025$ vertices, each edge has one of the colors $r_1$, $r_2$, or $r_3$. For each $i = 1,2,3$, if the $2025$ vertices can be divided into $a_i$ groups such that any two vertices connected by an edge of color $r_i$ are in different groups, find the minimum possible value of $a_1 + a_2 + a_3$.
2025 Turkey Team Selection Test
Day 1
For all positive integers $n$, the function $\gamma: \mathbb{Z}^+ \to \mathbb{Z}_{\geq 0}$ is defined as, $\gamma(1) = 0$ and for all $n > 1$, if the prime factorization of $n$ is $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k},$ then $\gamma(n) = \alpha_1 + \alpha_2 + \dots + \alpha_k$. We have an arithmetic sequence $X = \{x_i\}_{i=1}^{\infty}$. If for a positive integer $a > 1$, the sequence $\{ \gamma(a^{x_i} -1) \}$ is also an arithmetic sequence, show that the sequence $X$ has to be constant.
Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $x,y \in \mathbb{R}-\{0\}$, $$ f(x) \neq 0 \text{ and } \frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} - f \left( \frac{x}{y}-\frac{y}{x} \right) =2 $$
Day 2
Let $a,b,c$ be given pairwise coprime positive integers where $a>bc$. Let $m<n$ be positive integers. We call $m$ to be a grandson of $n$ if and only if, for all possible piles of stones whose total mass adds up to $n$ and consist of stones with masses $a,b,c$, it's possible to take some of the stones out from this pile in a way that in the end, we can obtain a new pile of stones with total mass of $m$. Find the greatest possible number that doesn't have any grandsons.
Let $P$ be a polygon formed by the edges of an infinite chessboard, which does not intersect itself. Let the numbers $a_1,a_2,a_3$ represent the number of unit squares that have exactly $1,2\text{ or } 3$ edges on the boundary of $P$ respectively. Find the largest real number $k$ such that the inequality $a_1+a_2>ka_3$ holds for each polygon constructed with these conditions.
Let $ABC$ be a scalene triangle with incenter $I$ and incircle $\omega$. Let the tangency points of $\omega$ to $BC,AC\text{ and } AB$ be $D,E,F$ respectively. Let the line $EF$ intersect the circumcircle of $ABC$ at the points $G, H$. Assume that $E$ lies between the points $F$ and $G$. Let $\Gamma$ be a circle that passes through $G$ and $H$ and that is tangent to $\omega$ at the point $M$ which lies on different semi-planes with $D$ with respect to the line $EF$. Let $\Gamma$ intersect $BC$ at points $K$ and $L$ and let the second intersection point of the circumcircle of $ABC$ and the circumcircle of $AKL$ be $N$. Prove that the intersection point of $NM$ and $AI$ lies on the circumcircle of $ABC$ if and only if the intersection point of $HB$ and $GC$ lies on $\Gamma$.
Day 3
Let $\omega$ be a circle on the plane. Let $\omega_1$ and $\omega_2$ be circles which are internally tangent to $\omega$ at points $A$ and $B$ respectively. Let the centers of $\omega_1$ and $\omega_2$ be $O_1$ and $O_2$ respectively and let the intersection points of $\omega_1$ and $\omega_2$ be $X$ and $Y$. Assume that $X$ lies on the line $AB$. Let the common external tangent of $\omega_1$ and $\omega_2$ that is closer to point $Y$ be tangent to the circles $\omega_1$ and $\omega_2$ at $K$ and $L$ respectively. Let the second intersection point of the line $AK$ and $\omega$ be $P$ and let the second intersection point of the circumcircle of $PKL$ and $\omega$ be $S$. Let the circumcenter of $AKL$ be $Q$ and let the intersection points of $SQ$ and $O_1O_2$ be $R$. Prove that $$\frac{\overline{O_1R}}{\overline{RO_2}}=\frac{\overline{AX}}{\overline{XB}}$$
A positive real number sequence $a_1, a_2, a_3,\dots $ and a positive integer \(s\) is given. Let $f_n(0) = \frac{a_n+\dots+a_1}{n}$ and for each $0<k<n$ \[f_n(k)=\frac{a_n+\dots+a_{k+1}}{n-k}-\frac{a_k+\dots+a_1}{k}\]Then for every integer $n\geq s,$ the condition \[a_{n+1}=\max_{0\leq k<n}(f_n(k))\]is satisfied. Prove that this sequence must be eventually constant.
Let \(n\) be a positive integer. For every positive integer $1 \leq k \leq n$ the sequence ${\displaystyle {\{ a_{i}+ki\}}_{i=1}^{n }}$ is defined, where $a_1,a_2, \dots ,a_n$ are integers. Among these \(n\) sequences, for at most how many of them does all the elements of the sequence give different remainders when divided by \(n\)?