Problem

Source: 2025 Turkey TST P3

Tags: functional equation, Turkey, algebra



Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $x,y \in \mathbb{R}-\{0\}$, $$ f(x) \neq 0 \text{ and } \frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} - f \left( \frac{x}{y}-\frac{y}{x} \right) =2 $$