A positive real number sequence $a_1, a_2, a_3,\dots $ and a positive integer \(s\) is given. Let $f_n(0) = \frac{a_n+\dots+a_1}{n}$ and for each $0<k<n$ \[f_n(k)=\frac{a_n+\dots+a_{k+1}}{n-k}-\frac{a_k+\dots+a_1}{k}\]Then for every integer $n\geq s,$ the condition \[a_{n+1}=\max_{0\leq k<n}(f_n(k))\]is satisfied. Prove that this sequence must be eventually constant.