2012 USA TSTST

Day 1

1

Find all infinite sequences $a_1, a_2, \ldots$ of positive integers satisfying the following properties: (a) $a_1 < a_2 < a_3 < \cdots$, (b) there are no positive integers $i$, $j$, $k$, not necessarily distinct, such that $a_i+a_j=a_k$, (c) there are infinitely many $k$ such that $a_k = 2k-1$.

2

Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.

3

Let $\mathbb N$ be the set of positive integers. Let $f: \mathbb N \to \mathbb N$ be a function satisfying the following two conditions: (a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime. (b) $n \le f(n) \le n+2012$ for all $n$. Prove that for any natural number $n$ and any prime $p$, if $p$ divides $f(n)$ then $p$ divides $n$.

Day 2

4

In scalene triangle $ABC$, let the feet of the perpendiculars from $A$ to $BC$, $B$ to $CA$, $C$ to $AB$ be $A_1, B_1, C_1$, respectively. Denote by $A_2$ the intersection of lines $BC$ and $B_1C_1$. Define $B_2$ and $C_2$ analogously. Let $D, E, F$ be the respective midpoints of sides $BC, CA, AB$. Show that the perpendiculars from $D$ to $AA_2$, $E$ to $BB_2$ and $F$ to $CC_2$ are concurrent.

5

A rational number $x$ is given. Prove that there exists a sequence $x_0, x_1, x_2, \ldots$ of rational numbers with the following properties: (a) $x_0=x$; (b) for every $n\ge1$, either $x_n = 2x_{n-1}$ or $x_n = 2x_{n-1} + \textstyle\frac{1}{n}$; (c) $x_n$ is an integer for some $n$.

6

Positive real numbers $x, y, z$ satisfy $xyz+xy+yz+zx = x+y+z+1$. Prove that \[ \frac{1}{3} \left( \sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \le \left( \frac{x+y+z}{3} \right)^{5/8} . \]

Day 3

7

Triangle $ABC$ is inscribed in circle $\Omega$. The interior angle bisector of angle $A$ intersects side $BC$ and $\Omega$ at $D$ and $L$ (other than $A$), respectively. Let $M$ be the midpoint of side $BC$. The circumcircle of triangle $ADM$ intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. Let $N$ be the midpoint of segment $PQ$, and let $H$ be the foot of the perpendicular from $L$ to line $ND$. Prove that line $ML$ is tangent to the circumcircle of triangle $HMN$.

8

Let $n$ be a positive integer. Consider a triangular array of nonnegative integers as follows: \[ \begin{array}{rccccccccc} \text{Row } 1: &&&&& a_{0,1} &&&& \smallskip\\ \text{Row } 2: &&&& a_{0,2} && a_{1,2} &&& \smallskip\\ &&& \vdots && \vdots && \vdots && \smallskip\\ \text{Row } n-1: && a_{0,n-1} && a_{1,n-1} && \cdots && a_{n-2,n-1} & \smallskip\\ \text{Row } n: & a_{0,n} && a_{1,n} && a_{2,n} && \cdots && a_{n-1,n} \end{array} \] Call such a triangular array stable if for every $0 \le i < j < k \le n$ we have \[ a_{i,j} + a_{j,k} \le a_{i,k} \le a_{i,j} + a_{j,k} + 1. \] For $s_1, \ldots s_n$ any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row $k$ is equal to $s_k$.

9

Given a set $S$ of $n$ variables, a binary operation $\times$ on $S$ is called simple if it satisfies $(x \times y) \times z = x \times (y \times z)$ for all $x,y,z \in S$ and $x \times y \in \{x,y\}$ for all $x,y \in S$. Given a simple operation $\times$ on $S$, any string of elements in $S$ can be reduced to a single element, such as $xyz \to x \times (y \times z)$. A string of variables in $S$ is called full if it contains each variable in $S$ at least once, and two strings are equivalent if they evaluate to the same variable regardless of which simple $\times$ is chosen. For example $xxx$, $xx$, and $x$ are equivalent, but these are only full if $n=1$. Suppose $T$ is a set of strings such that any full string is equivalent to exactly one element of $T$. Determine the number of elements of $T$.

None

These problems are copyright $\copyright$ Mathematical Association of America.