Problem

Source: USA TSTST 2012, Problem 8

Tags: induction, linear algebra, matrix, ceiling function, combinatorics unsolved, combinatorics



Let $n$ be a positive integer. Consider a triangular array of nonnegative integers as follows: \[ \begin{array}{rccccccccc} \text{Row } 1: &&&&& a_{0,1} &&&& \smallskip\\ \text{Row } 2: &&&& a_{0,2} && a_{1,2} &&& \smallskip\\ &&& \vdots && \vdots && \vdots && \smallskip\\ \text{Row } n-1: && a_{0,n-1} && a_{1,n-1} && \cdots && a_{n-2,n-1} & \smallskip\\ \text{Row } n: & a_{0,n} && a_{1,n} && a_{2,n} && \cdots && a_{n-1,n} \end{array} \] Call such a triangular array stable if for every $0 \le i < j < k \le n$ we have \[ a_{i,j} + a_{j,k} \le a_{i,k} \le a_{i,j} + a_{j,k} + 1. \] For $s_1, \ldots s_n$ any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row $k$ is equal to $s_k$.