Problem

Source: USA TSTST 2012, Problem 3

Tags: function, modular arithmetic, induction, number theory, greatest common divisor, relatively prime, arithmetic sequence



Let $\mathbb N$ be the set of positive integers. Let $f: \mathbb N \to \mathbb N$ be a function satisfying the following two conditions: (a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime. (b) $n \le f(n) \le n+2012$ for all $n$. Prove that for any natural number $n$ and any prime $p$, if $p$ divides $f(n)$ then $p$ divides $n$.